p. 203 #24, 26-28 # Review Ionic Crystals - packing Metallic bonding - cations 'sea of electrons' Packing arrangements Body-Centered Cubic Face-Centered Cubic Hexagonal Close-Packed Hexagonal close-packed # **Alloys** #### **Alloys** Mixtures of two or more elements, at least one of which is a metal. *Table 7.3* | Table 7.3 | | |--------------------------------------|-------------------------------------------| | Composition of Some<br>Common Alloys | | | Name | Composition (by mass) | | Sterling<br>silver | Ag 92.5%<br>Cu 7.5% | | Cast iron | Fe 96%<br>C 4% | | Stainless<br>steel | Fe 80.6%<br>Cr 18.0%<br>C 0.4%<br>Ni 1.0% | | Spring<br>steel | Fe 98.6%<br>Cr 1.0%<br>C 0.4% | | Surgical<br>steel | Fe 67%<br>Cr 18%<br>Ni 12%<br>Mo 3% | Form in one of two ways: ### 1) Substitutional Alloys If atoms of the alloy are about the same size, they can replace each other in the crystal. #### 2) Interstitial Alloys If atomic sizes are quite different, smaller atoms can fit into the spaces between the larger atoms. ## **Electronegativity** #### **Electronegativity** The ability of an atom in a compound to attract electrons #### **Trends** - Within a group, electronegativity decreases from top to bottom - Within a period, electronegativity increases from left to right Ex. F $$F - CI$$ $F : CI$ $4.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5.0$ $5$ ## **Covalent Bond** Recall that a **covalent bond** is a shared pair of electrons between two nonmetal atoms. - Electrons are attracted to the positive nuclei - Each atom wants to reach the electron configuration of a noble gas (ns²np6 Octet Rule) #### **Single Covalent Bond** Two atoms held together by sharing a pair of electrons #### **Molecular Formula** **Electron Dot Structure** **Structural Formula** F<sub>2</sub> ## Lone pair (unshared pair) A pair of valence electrons not shared between atoms # $H_2O$ ## CH<sub>4</sub> - one of carbon's 2s electrons is promoted to the 2p orbital: ## **Double covalent bond** Two shared pairs of electrons # **Triple covalent bond** Three shared pairs of electrons $$\frac{N_2}{N_1}$$ $\frac{N_2}{N_2}$ $\frac{N_2}{N_2}$ $\frac{N_2}{N_2}$ # Homework p. 220 #7, 8