(ii)
$$H_2O_{(g)} \longrightarrow H_{2(g)} + \frac{10}{2}O_{2(g)}$$

$$\Delta H_{\Omega} = 241.8 \text{ kJ}$$

POTENTIAL ENERGY DIAGRAMS

- may be used to express enthalpy change (ΔH_r)
- shows the potential energy of the reactants and products of a chemical reaction.
- shows the difference between the initial and final energies as the enthalpy change. (ΔH_r)

Endothermic Rxn

Exothermic Rxn

see Fig 11-8 p 373 (also 11-15,16,17)

For the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(ii)
$$H_2O_{(g)} \longrightarrow H_{2(g)} + \frac{10}{2}O_{2(g)}$$

 Δ Ho = 241.8 kJ

For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(l)}$$
 $\Delta H^0 = -2802.7kJ$

$$\frac{C_{c}H_{12}O_{60}+6O_{2}g}{\Delta H_{r}=-2802.7kJ}$$

$$\frac{C_{c}H_{12}O_{60}+6O_{2}g}{\Delta H_{r}=-2802.7kJ}$$

$$\frac{C_{c}H_{12}O_{60}+6O_{2}g}{\Delta H_{r}=-2802.7kJ}$$

Predicting Energy Changes using Hess's Law

Hess's Law - (Heat of Summation)

- allows for the determination of the enthalpy change of a reaction with direct use of calorimetry.

Rules:

- if a chemical equation is reversed, then the sign of the ΔH_r changes
- if the coefficients of a chemical equation are altered by multiplying or dividing by a constant factor, then the ΔH_r is altered in the same way

Ex.
$$C_{(s)} + O_{2(g)} \Rightarrow CO_{2(g)}$$
 $\Delta H = -393.5 \text{ kJ}$

$$CO_{2(g)} \rightarrow C(s) + O_{2(g)}$$
 $\Delta H = -393.5 \text{ kJ}$

$$2C_{(s)} + 2O_{2(g)} \rightarrow 2C_{(2g)}$$
 $\Delta H = -787.0 \text{ kJ}$

Example

$$H_2 \circ (g)$$
 + $C(s)$ \rightarrow $C \circ (g)$ + $H_2(g)$
$$\Delta H = ?$$

Steps (found using calorimetry):