VSEPR

$$H - \dot{N} - H$$

Ex. CO₂

When predicting molecular shapes, double and triple bonds are treated as single bonds.

Ex. CH₂O

Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

Atomic
Orbitals

$$S+Px+Py+P_2 \rightarrow Sp^3+sp^3+sp^3$$

 U

Hybridization Involving Double Bonds

Ex.
$$C_2H_4$$

H

 $C_1=C_2$

H

 $C_1=C_2$

H

 $C_1=C_2$

H

The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

