Worksheet

$$Hs = (1.001)$$
 $\frac{155}{1.9c}$ (0.001)

Reference Energy State

Reference energy state - elements are defined as the reference point at which the potential energy is shown to be zero. Therefore: E_p of $H_{2(g)} = 0$ kJ

$$-285.8 \text{ k} \text{ J}$$
Ex. $H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_2O_{(g)} \Delta H_f = -285.8 \text{ kJ}$

*allows us to describe the enthalpy change for a formation reaction from zero to a final value

Predicting ΔH_r Using Formation Reactions

The Standard Enthalpy Change (ΔH^o_r) for a reaction can be found by writing the formation equation and corresponding standard enthalpy change for each compound in the given equation and then applying Hess's Law.

Ex.
$$CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2(s)}$$
 $\Delta H_r = ?$

Step 1: Write formation equations (with standard enthalpy change) each compound in the given equation.

①
$$Ga(s) + \frac{1}{2}O_{2}(g) \rightarrow GaO(s)$$
 $AH_{F=-634.9}IJ$
② $H_{Z}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{D}O(e)$ $AH_{F=-285.8}IJ$
③ $Ga(s) + O_{2}(g) + H_{Z}(g) \rightarrow Ga(oH)_{2}(s)$ $AH_{F=-986.1}IJ$
Step 2: Apply Hess's Law

Enthalpies of Formation to Predict ΔH_r

$$\Delta H_{r} = \Delta H_{f} + (-\Delta H_{f}) + (-\Delta H_{f})$$

$$Ca(OH)_{2}$$

$$CaO$$

$$H_{2}O$$

$$\Delta H_r = \Delta H_f - \left(\Delta H_f + \Delta H_f\right)$$

$$Ca(OH)_2 CaO H_2O$$

$$\Delta H_r = \Delta H_{fp} - \Delta H_{fr}$$
products reactants

$$\Delta H_{\rm r} = \sum_{\rm n} H_{\rm fp} - \sum_{\rm n} H_{\rm fr}$$

knowing that $\Delta H = nH$

Ex. What is the standard molar enthalpy of combustion of methane fuel?

$$\frac{\text{CH}_{4(g)} + 2O_{2(g)}}{\text{AHr} = n \text{Hr}}$$

$$\frac{\text{AHr}}{\text{h}} = \frac{\text{AHr}}{\text{h}} = \frac{-802.7 \text{kJ}}{\text{l mol}} = \frac{-802.7 \text{kJ}}{\text{l mol}}$$

$$\frac{\text{AHr}}{\text{h}} = \frac{\text{So}_{2.7} \text{kJ}}{\text{l mol}} + \frac{\text{So}_{2.7} \text{kJ}}{\text{mol}} + \frac{\text{so}_{2.7} \text{kJ}}{\text{so}_{2.7} \text{kJ}} + \frac{\text{so}_{2.7} \text{kJ}}{\text{so}_{2$$