Thermal Stability

Thermal Stability - the tendency of a compound to resist decomposition when heated.

- the more endothermic the simple decomposition (sd), the more stable the compound.

Ex.
$$H_{\circ_{(sd)}} = +280.7 \text{ kJ/mol}$$

SnO

$$H_{(sd)} = + 577.6 \text{ kJ/mol}$$

$$SnO_2$$

Therefore SnO₂ is more stable.

*Normally not given the H_d, but given the H_f

Which is more stable, ammonia or butane?

$$\frac{M+3}{H+10}$$

$$H_{f} = -45.9 \frac{k3}{mol}$$

$$H_{so} = 45.9 \frac{k3}{mol}$$

$$H_{so} = 125.6 \frac{k3}{mol}$$

$$H_{so} = 125.6 \frac{k3}{mol}$$

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 - 9N_{3}$$
 $\Delta H_4 = -45.9K_3$
 $NH_3 - 9\frac{1}{2}N_2 + \frac{3}{2}H_2$ $\Delta H_{50} = 45.9K_3$

Worksheet