Combinations

Focus on...

- explaining the differences between a permutation and a combination
- determining the number of ways to select r elements from n different elements
- solving problems using the number of combinations of n different elements taken r at a time
- solving an equation that involves ${ }_{n} C_{r}$ notation

Sometimes you must consider the order in which the elements of a set are arranged. In other situations, the order is not important. For example, when addressing an envelope, it is important to write the six-character postal code in the correct order. In contrast, addressing an envelope, affixing a stamp, and inserting the contents can be completed in any order.

In this section, you will learn about counting outcomes when order does not matter.

Problem solving, reasoning, and decision-making are highly prized skills in today's workforce. Here is your opportunity to demonstrate those skills.

1. From a group of four students, three are to be elected to an executive committee with a specific position. The positions are as follows:
1st position President
and position Vice President
3rd position
Treasurer
a) Does the order in which the students are elected matter? Why? YeS
b) In how many ways can the positions be filled from this group?

2. Now suppose that the three students are to be selected to serve on a committee.
a) Is the order in which the three students are selected still important? Why or why not? No
b) How many committees from the group of four students are now possible? $\quad 4 C_{3}=4$ combinations
c) How does your answer in part b) relate to the answer in step lb)?
combination

- a selection of objects without regard to order
- all of the three-letter combinations of P, Q, R, and S are $P Q R$, PQS, PRS, and QRS (arrangements such as $P Q R$ and $R P Q$ are the same combination)

$$
\begin{aligned}
& n=4 \\
& r=3
\end{aligned}
$$

- Par and RPQ represents
a permutations but only
combination

Determining the Number of Possible Combinations
When counting with Permutations, the order the objects are chosen is important. When the order of choosing does not have to be considered, we refer to Combinations. A combination is a subset of the number of permutations and as such, the number of combinations for a particular situation is always less than the number of permutations.

The expression for evaluating combinations is as follows:
The notation ${ }_{n} C_{r}$, or $\binom{n}{r}$, represents the number of combinations of n items taken r at a time, where $n \geq r$ and $r \geq 0$.

$$
\begin{aligned}
{ }_{n} C_{r} & =\frac{{ }_{n} P_{r}}{r!} \\
& =\frac{\frac{n!}{(n-r)!}}{r!} \\
& =\frac{n!}{(n-r)!r!}
\end{aligned}
$$

Why must $n \geq r \geq 0$?

A combination is a selection of a group of objects, taken from a larger group, for which the kinds of objects selected is important, but not the order in which they are selected.

There are several ways to find the number of possible combinations. One is to use reasoning. Use the fundamental counting principle and divide by the number of ways that the objects can be arranged among themselves. For example, calculate the number of combinations of three digits made from the digits $1,2,3,4$, and 5 without repetitions:

Number of choices Number of choices Number of choices for the first digit for the second digit for the third digit $\stackrel{5}{\square}$

$\xrightarrow{3}$
There are $5 \times 4 \times 3$ or 60 ways to arrange 3 items from 5 . However, 3 digits can be arranged in 3 ! ways among themselves, and in a combination these are considered to be the same selection.

Example 1

order does not matter

A baseball team with 12 players is allowed to send four players to a weekend batting clinic. In how many ways can the group bl$\overline{\text { chosen }}$?
$\xrightarrow{ }$
Solution $\quad n=12 \quad r=4$
Since order is not important, the group is a combination. You are choosing a combination of from a group of
${ }_{\mathbf{n}} \mathbf{C}_{\mathbf{r}}=\frac{n!}{r!(n-r)!}$
${ }_{12} \mathrm{C}_{4}=\frac{12!}{4!(12-4)!}$
${ }_{12} \mathrm{C}_{4}=\frac{12!}{4!8!}$
${ }_{12} \mathrm{C}_{4}=495$

Example 2

 order does not matterA committee of size 4 and a committee of size 3 are to be assigned from a group of 10 people. How many ways can this be done $\overline{1 t}$ no person is assigned to both committees?

Solution
$\underline{1^{\text {st }} \text { Committee } \quad \mathbf{2 n}^{\text {nd }} \text { Committee }}$
${ }_{\mathrm{n}} \mathbf{C}_{\mathbf{r}}=\frac{n!}{r!(n-r)!} \quad{ }_{\mathrm{n}} \mathbf{C}_{\mathbf{r}}=\frac{n!}{r!(n-r)!}$
${ }_{10} \mathrm{C}_{4}=\frac{10!}{4!(10-4)!} \quad{ }_{6} \mathrm{C}_{3}=\frac{6!}{3!(6-3)!}$
${ }_{10} \mathrm{C}_{4}=\frac{10!}{4!6!} \quad{ }_{6} \mathrm{C}_{3}=\frac{6!}{3!3!}$
${ }_{10} \mathrm{C}_{4}=210$
${ }_{6} \mathrm{C}_{3}=20$

There are 4200 ways to form a committee of size 4 and a committee of size $\mathbf{3}$ from a group of $\mathbf{1 0}$ people if no person is assigned to both committees. "or" means

Homework

Finish both sides of the worksheet

Answers to Homework

Answers to Homework

1. A hockey team has 17 players. Six of the players are selected, at random, to attend a summer hockey school. In how many different ways can the players be selected? ${ }_{17} C_{6}=12376$
2. In the card game " 120 s," each player is dealt a hand of five cards. How man different hands can be given to the first player?
3. At a customer 248460

At a customer service counter, the customers usually take a numbered ticket from a machine so that they are served in order. On one day, however, the machine is broken. The clerk has eight customers

Ordef

* (a) In how many different ways can the eight customers be served? $P_{8}=40320$
maters
* (b) In how many ways can the clerk serve the first four customers? $P_{4}=1680$

4. A car dealer's lot contains 34 mid-sized cars. A rental agency purchases 12 of the vehicles. How many different possibilities are there for choosing the 12 vehicles? ${ }_{3} \mathrm{C}_{12}=548354040$
5. Lotteries sometimes use "scratch and win" cards. These are cards in which a number of prize boxes are hidden and can be revealed by scratching away a Waxy covering. If all of the revealed prize boxes match, you win a prize Suppose that one such card contains eight prize boxes and you are to reveal any four. In how many ways can you do this?
6. A chess club has six boys and six girls. Four players are selected to attend a chess clinic. If two boys and two girls are to attend, how many different selections are possible? $={ }_{6} C_{2} \times{ }_{6} C_{2}=15 \times 15=225$
7. A hockey team has two goalies, six defense, and nine forwards. From the team, six people are chosen to attend a hockey school.
(a) In how many ways can you select six players from the team, regardless of playing position? ${ }_{17} C_{6}=12376$
(b) In how many ways can you select the six players if exactly one goalie must attend? $C_{1}=2 \times 300=6006$
8. Explain why a combination lock would be more correctly referred to as a "permutation" lock erder matters

Example 2

Combinations With Cases

Rianna is writing a geography exam. The instructions say that she must answer a specified number of questions from each section. How many different selections of questions are possible if
a) she must answer two of the four questions in part A and three of the five questions in part B?
b) she must answer two of the four questions in part A and at least four of the five questions in part B?

Homework

