Transformations of Exponential Functions

Focus on...

- applying translations, stretches, and reflections to the graphs of exponential functions
- representing these transformations in the equations of exponential functions
- · solving problems that involve exponential growth or decay

Link the Ideas

The graph of a function of the form $f(x) = a(c)^{b(x-h)} + k$ is obtained by applying transformations to the graph of the base function $y = c^x$, where c > 0.

Parameter	Transformation	Example
а	 Vertical stretch about the <i>x</i>-axis by a factor of <i>a</i> For <i>a</i> < 0, reflection in the <i>x</i>-axis (<i>x</i>, <i>y</i>) → (<i>x</i>, <i>ay</i>) 	$y = 4(3)^{x}$ $y = 4(3)^{x}$ $y = 4(3)^{x}$ $y = -2(3)^{x}$ $y = -2(3)^{x}$
b	• Horizontal stretch about the y-axis by a factor of $\frac{1}{ b }$ • For $b < 0$, reflection in the y-axis • $(x, y) \rightarrow \left(\frac{x}{b}, y\right)$	$y = 2^{3x} - y = 2^{x}$ $y = 2^{3x} - y = 2^{-0.5x}$ $-4 - 2 = 0 - 2 - 4 - x$
k	 Vertical translation up or down (x, y) → (x, y + k) 	$y = 4^{x} + 2$ $y = 4^{x} + 2$ $y = 4^{x}$ $-4 -2 0 / 2 4 x$ $y = 4^{x} - 3$ $y = 4^{x} - 3$
h	 Horizontal translation left or right (x, y) → (x + h, y) 	$y = 5^{x+2} 4 \qquad y = 6^{x} -4 -2 0 2 4 x$

Example 1

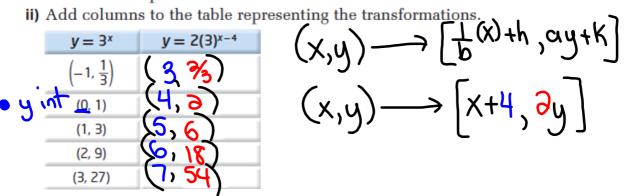
Apply Transformations to Sketch a Graph

Consider the base function $y = 3^x$. For each transformed function,

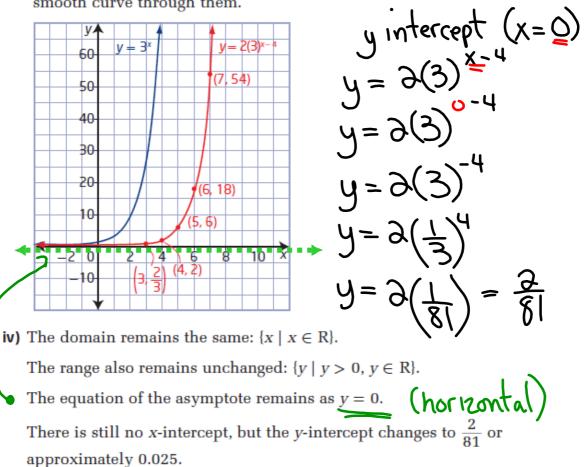
i) state the parameters and describe the corresponding transformations

 create a table to show what happens to the given points under each transformation

$y = 3^x$	
$\left(-1,\frac{1}{3}\right)$	
(0, 1)	
(1, 3)	
(2, 9)	
(3, 27)	


iii) sketch the graph of the base function and the transformed function

iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts


a) $y = 2(3)^{x-4}$

Solution

- a) i) Compare the function $y = 2(3)^{x-4}$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.
 - *b* = 1 corresponds to no horizontal stretch.
 - a = 2 corresponds to a vertical stretch of factor 2. Multiply the of the points in column 1 by
 - h = 4 corresponds to a translation of 4 units to the right. Add
 - to the coordinates of the points in column 2.
 - *k* = 0 corresponds to no vertical translation.

iii) To sketch the graph, plot the points from column 3 and draw a smooth curve through them.

Assignment **b**) $y = -\frac{1}{2}(3)^{\frac{1}{5}x} - 5$ $y = -\frac{1}{2}(3)^{\frac{1}{5}x} - 5$

- i) state the parameters and describe the corresponding transformations
- ii) create a table to show what happens to the given points under each transformation $U = 3^{\times}$ iii) sketch the graph of the base function and the transformed function
- iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts

Homework

#1-7 and #10 on page 354