Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$

 $a = 3$ $(x, y) \Rightarrow (x, 3y)$
 $b = 1$ $(x, y) \Rightarrow (-3x, y)$
 $b = 3$ $(-3, 5) \Rightarrow (-3, 15)$
 $b = 3$ $(-3, 5) \Rightarrow (-3, 5)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 5$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 6$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 7$ $(-4, 17)$
 $b = 8$ $(-3, 5) \Rightarrow (-4, 17)$

Summary of Transformations...

Questions from Homework

6. The graph of the function y = f(x) is vertically stretched about the x-axis by a factor of 2. $\alpha = 3$

$$D: \{x \mid -6 \leq x \leq 6, x \in R \}$$

$$\alpha \left[-6,6 \right]$$

- R: {y+8 < y < 8, y < R} or [-8,8]
- 2. a) Copy and complete the table of values

for the given functions.			a= 1/3
X	$f(x)=x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$
-6	36	108	19
-3	9	27	3
0	0	0	0
3	9	27	3
6	36	108	19

Transformations:

g(x) = -3f(4(x-4)) - 10 0= 3

2. The function y = f(x) is transformed to the b = 4 function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

Transformations:

$$y = f(x)$$
 $\longrightarrow y = af(b(x-h)) + k$

Mapping Rule:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

b)
$$y = f(3x + 6)$$

a)
$$y = 3f(2x)$$
 $a = 3$ $b = 3$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor of 3.

b)
$$y = f(3x + 6)$$
 $a = 1$ $b = 3$ $h = -2$ $h = 0$ $y = f(3(x+2))$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.

Homework

Page 38 # 3-6

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.

Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x).

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed

function is

How could you use the mapping $(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$ to verify this equation?

17. The graph of the function $y = 2x^2 + x + 1$ is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.