Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$

 $a = 3$ $(x, y) \Rightarrow (x, 3y)$
 $b = 1$ $(x, y) \Rightarrow (-3x, y)$
 $b = 3$ $(-3, 5) \Rightarrow (-3, 15)$
 $b = 3$ $(-3, 5) \Rightarrow (-3, 5)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 4$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 5$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 6$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 7$ $(-3, 5) \Rightarrow (-4, 17)$
 $b = 8$ $(-3, 5) \Rightarrow (-4, 17)$

Summary of Transformations...

Questions from Homework

6. The graph of the function y = f(x) is vertically stretched about the x-axis by a factor of 2. $\alpha = 3$

$$(x,y) \longrightarrow (x,\partial y)$$

$$D: \{x \mid -6 \leq x \leq 6, x \in R \}$$
or $[-6,6]$

2. a) Copy and complete the table of values

for	the given i	a= 1/3		
X	$f(x)=x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$	
-6	36	108	19	
-3	9	27	3	
0	0	0	0	
3	9	27	3	
6	36	108	19	

Transformations:

g(x) = -3f(4(x-4)) - 10 0= 3

2. The function y = f(x) is transformed to the b = 4 function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by k = 10 filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the by a factor of . It is vertically stretched about the by a factor of . It is reflected in the and then translated units to the right and units down.

Transformations:

$$y = f(x)$$
 $\longrightarrow y = af(b(x-h)) + k$

Mapping Rule:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

b)
$$y = f(3x + 6)$$

a)
$$y = 3f(2x)$$
 $a = 3$ $b = 3$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor of 3.

Factor

b)
$$y = f(3x + 6)$$
 $\alpha = 1$ $b = 3$ $h = -2$ $h = 0$ $y = f(3(x+2))$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.

Questions From Homework

3. Copy and complete the table by describing the transformations of the given functions, compared to the function v = f(x).

compared to the function $y = f(x)$.								
	Function	Reflections	Vertical Stretch Factor	Horizontal Stretch Factor	Vertical Translation	Horizontal Translation ≤		
	y-4=f(x-5)	I	1	l	J	5		
	y + 5 = 2f(3x)	1	6	M	5			
	$y = \frac{1}{2}f\left(\frac{1}{2}(x-4)\right)$		ろ	0	l	4	_	
	y + 2 = -3f(2(x + 2))	X	3	79	9	-9	_	

HSF is the reciprocal of b

6. The key point (-12, 18) is on the graph of y = f(x). What is its image point under each transformation of the graph of f(x)?

b)
$$y = -3f(-\frac{2}{3}x - 6) + 4$$
 Factor First

 $y = -3f(-\frac{2}{3}(x + 9)) + 4$
 $0 = -3$
 $b = -\frac{2}{3}$
 $h = -9$
 $K = 4$
 $(x, y) \longrightarrow (-\frac{2}{3}x - 9, -2y + 4)$
 $(-12, 18) \longrightarrow (9, -32)$

Example 3 (Question 4 + 10 pg 39 + 40) Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.

Solution

The equation of the transformed function is g(x) = 2f(4(x + 7)) + 2.

O Vertical Stretch Factor:
$$8 = 3$$
 $\alpha = 3$ (Compare Range New) 4

© Equation:
$$g(x) = 25(4(x+1)) + 3$$

** Check using Key Points:

$$(x,y) \longrightarrow (\pm x-7, 3y+3)$$

 $(4,4) \longrightarrow (-8,10)$
 $(0,0) \longrightarrow (-7,3)$
 $(4,4) \longrightarrow (-6,10)$

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k.

$$y = -f\left(\frac{1}{5}(x-3)\right)$$

$$0 \text{ VSF}: \frac{4}{4} = 1 \quad \alpha = 1$$

OHSF:
$$\frac{20}{4} = 5$$
 $b = \frac{1}{5}$

@ Equation:
$$y = \frac{1}{5}(\frac{1}{5}(x-3)) + 0$$

 $y = \frac{1}{5}(\frac{1}{5}(x-3))$

Homework

Page 38 # 3-6 Plus 7, 8, 9 (a, c, e) and 10 17. The graph of the function $y = 2x^2 + x + 1$ is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2, stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.