Warm Up

Name the following molecules:

Check Homework

CH₃-CH = C(CH₃) - C(CH₃)₂ - CH₃

CH₃-CH =
$$\frac{C}{4}$$
 - CH₃

CH₃-CH = $\frac{C}{4}$ - CH₃

CH₃ - CH₃

CH₃ - CH₃

3,4,4 - Wimethyl-2 - pentene

Aromatic Compounds

Historically aromatic compounds were organic compounds with an odour. Today aromatic compounds are defined as benzene (C_6H_6) and all carbon compounds that contain benzene-like structures.

Ex.

Although the molecular formula for benzene suggests 3 double bonds between three single bonds, empirical evidence shows:

- (i) the ring is relatively unreactive we know multiple bonds are reactive
- (ii) The C--C bonds are of equal length and strength [EMPIRICAL EVIDENCE DOES NOT MATCH THEORY]

The evidence can only be explained if the pi electrons are delocalized (do not stay with any one carbon) and circle in a donut shaped cloud above and below the plane of the sp² $\dot{\xi}$ -C bonds.

or

think multiple bonds

Substituted Benzenes

Mono- substituted benzene structures

Ex.

methy/benzene

No number is needed for mono-substitued benzenes because all ring positions are identical.

Simple Di - substituted benzenes

Ex.

When two groups are attached to benzene, the ring is numbered to give the lower numbers to the branches.

1,2-dimethylbenzene or ortho-dimethylbenzene

The prefix meta is used for 1,3 di-substituted benzenes.

Ex.

1,3-dimethylbenzene or meta-dimethylbenzene

The prefix para is used for 1,4 di- substituted benzenes.

Ex.

1,4-dimethylbenzene or para-dimethylbenzene

When the benzene ring itself is considered as a branch, it is given the name *phenyl*

Ex.

5-phenyl-2-pentene
$$-\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}$$

