Formation Reactions:

This reactions starts with elements only as reactants. The reactants will form compounds as products.

elements ⇒compound

Ex.
$$C_{(s)} + 2H_{2(g)} --> CH_{4(g)}$$

The molar enthalpy symbol for a formation reaction is H_f

Simple Decomposition Reactions:

This reaction starts as a compound, which decomposes into its elements.

(opposite of a formation reaction)

compound ⇒elements

Ex.
$$CH_{4(g)} -> C_{(s)} + 2H_{2(g)}$$

The molar enthalpy symbol is H_{SD} .

Combustion Reactions:

The reaction of a substance with excess oxygen to produce an oxide.

Ex.
$$C_{(s)} + O_{2(g)} --> CO_{2(g)}$$

The molar enthalpy symbol is \mathbf{H}_{c}

- (b) Molar Enthalpies
- $\mathbf{H_f}$ molar enthalpies of formation is the quantity of heat released or absorbed when one mole of a substance forms from its elements.
- $\mathbf{H_c}$ molar enthalpies of combustion is the quantity of heat released or absorbed when one mole of a substance reacts with oxygen.
- Ho standard molar enthalpy is the quantity of heat released or absorbed when one mole of a substance reacts at SATP
- (c) ΔH_r Enthalpy change is the quantity of heat released or absorbed when a reaction occurs. This may also be called "Heat of Reaction" or "Change in Heat".
- ⇒must know the number of moles of a substance reacting to determine the enthalpy change
- (d) Molar enthalpy may be determined from the enthalpy change as long as the number of moles (n) are known.

$$Q = -Q$$

$$mC\Delta T = -mC\Delta T *T_{f} same$$

$$(170.9)(0.900 \frac{3}{9}.c)(T_{f} - 105.0°) = -(115.09)(4.19 \frac{3}{9}.c)(T_{f} - 25.0°)$$

$$T_{f} = 44.3°C$$

$$4(2)(x-1) = -1(2)(x-3)$$

Reaction Enthalpies

$$\Delta H_r = nH_r$$

Ex.
$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$$

$$50_2 + \frac{1}{2}0_2 \rightarrow 50_3$$

$$H_c^0 = -98.79 \text{kJ/mol}$$

How do we find the change in enthalpy of $SO_{2(g)}$??

$$\Delta H_c = nHc$$

$$\Delta H_{c} = (2 \text{ mol}) (-98.79 \text{ kJ/mol})$$

$$\Delta H_{c} = -197.58 \text{ kJ}$$

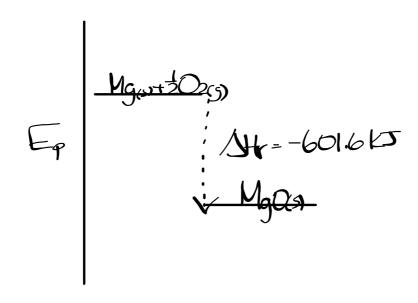
COMMUNICATING ENTHALPY CHANGES

Using ΔH_r notation:

- for chemical reactions not well known, the chemical equation must accompany the enthalpy change. The molar enthalpy of reaction (or change in enthalpy) follows the equation. For exothermic reactions the $\Delta H_r < 0$.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} = > MgO_{(s)} \Delta H_r = -601.6kJ$$

 ${}^{\cup}$ he Enthalpy Change (ΔH_r) may be included as a term in the balanced equation:


(i) In endothermic reactions - energy is reported as a reactant and

is transformed in the reaction.

$$H_2O_{(a)} \rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$$
Ex. $H_2O_{(l)} + 285.8$ kJ $\Rightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$

(ii) In exothermic reactions - energy is reported as a product since it is being produced.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} \Rightarrow MgO_{(s)} + 601.6kJ$$

H20(0)— H2(9) +
$$\frac{1}{2}$$
02(9)

H2(9) + $\frac{1}{2}$ 02(9)

POTENTIAL ENERGY DIAGRAMS

- may be used to express enthalpy change (ΔH_r)
- shows the potential energy of the reactants and products of a chemical reaction.
- shows the difference between the initial and final energies as the enthalpy change. (ΔH_r)

$Endothermic \ Rxn$ $Exothermic \ Rxn$ reactants E_p $\Delta H_r > 0$ reactants P_p $\Delta H_r < 0$ P_r P_r

see Fig 11-8 p 373 (also 11-15,16,17)

For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)}$$
 —— $6CO_{2(g)} + 6H_2O_{(l)}$ $\Delta H^0 = -2802.7kJ$

(ii)
$$H_2O_{(g)} \longrightarrow H_{2(g)} + \frac{1}{2}O_{2(g)}$$
 $\Delta H^0 = 241.8 \text{ kJ}$

-