
Hybridization Involving Single Bonds

In <u>hybridization</u>, atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

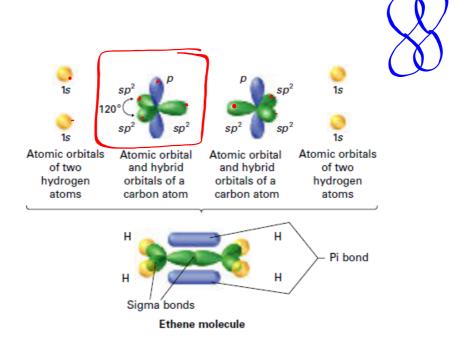
Hybridization Involving Double Bonds

Ex.
$$C_2H_4$$

H

 $C = C_2$

H


H

The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

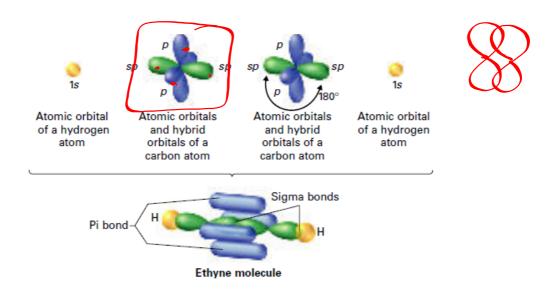
Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding 2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

Hybridization Involving Triple Bonds

Ex. C₂H₂


$$H-C\equiv C-H$$

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with thes*p* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding 2p orbitals overlap side-by-side to form two carbon-carbon pi bonds.

$$\frac{C_2H_2}{C_2H_2}$$

Determine the type of hybrid orbitals used for each of the following carbons atoms.

Homework

p. 236 #23-29

Worksheet