Homework

Reference Energy State

Reference energy state - elements are defined as the reference point at which the potential energy is shown to be zero.

Therefore:
$$E_p$$
 of $H_{2(g)} = 0$ kJ

Ex.
$$H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_2O_{(g)} \Delta H_f = -285.8 \text{ kJ}$$

*allows us to describe the enthalpy change for a formation reaction from zero to a final value

Thermal Stability

Thermal Stability - the tendency of a compound to resist decomposition when heated.

- the more endothermic the simple decomposition (sd), the more stable the compound.

Ex.
$$H_{\circ_{(sd)}} = +280.7 \text{ kJ/mol}$$

SnO

$$H_{(sd)} = + 577.6 \text{ kJ/mol}$$

$$SnO_2$$

Therefore SnO₂ is more stable.

*Normally not given the H_d, but given the H_f

Which is more stable, ammonia or butane?

HzO(e)
$$\rightarrow$$
 Hz(g) + $\frac{1}{2}$ O2(g)
Hz(g) + $\frac{1}{2}$ O2(g) \rightarrow HzO(g) \triangle H(=?

Worksheet