Radian Measure

A radian is the angle subtended by an arc of length r (radius)

Use the above information to develop a formula to connect arc length, radius and the measure of an angle in radian measure...

Check-Up...

Arrange the following angles in descending order:

340° 4.28
$$rad \frac{9\pi}{5} (10\pi)^{\circ}$$

Find the angles co-terminal to Θ on the given domain

$$\theta = \frac{5\pi}{6}$$
, $-2\pi \le \theta \le 8\pi$

Homework

Page 176: #14, 15, 16

Find the area of the shaded region

Questions from Homework

- 14. A rotating water sprinkler makes one revolution every 15 s. The water reaches a distance of 5 m from the sprinkler.
 - a) What is the arc length of the sector watered when the sprinkler rotates through $\frac{5\pi}{3}$? Give your answer as both an exact value and an approximate measure, to the nearest hundredth.
 - b) Show how you could find the area of the sector watered in part a).
 - c) What angle does the sprinkler rotate through in 2 min? Express your answer in radians and degrees.

Given: a)
$$\alpha = \Theta r$$

$$r=5m \qquad \alpha = 6\pi / 5 = 35\pi / 5$$

$$\Theta = 5\pi / 3$$

$$\frac{A_{\text{sector}}}{26\pi} = \frac{5\pi}{3} \cdot \frac{1}{2\pi} \cdot \frac{25\pi}{3}$$

Asector =
$$\frac{12571}{6}$$
 m³

In Radians.

- 15. Angular velocity describes the rate of change in a central angle over time. For revolutions per minute (rpm), radians per second, degrees per hour, and so on. All that is required is an angle measurement expressed over a unit of time.
 - a) Earth makes one revolution every 24 h. Express the angular velocity of Earth in three other ways.
 - b) An electric motor rotates at 1000 rpm. What is this angular velocity expressed in radians per second?
 - c) A bicycle wheel completes 10 revolutions every 4 s. Express this angular velocity in degrees per minute. *'X*600)`

b)
$$V_a = 0$$
 = $\frac{\partial 00000 \text{ rads}}{\text{min}}$ of $\frac{\partial v_a}{\partial v_a}$ of \frac

c)
$$V_a = 0 = 3600^{\circ}$$
. $\frac{608}{lmin} = 54000^{\circ}/min$

$$\Theta = \frac{4}{3} \text{ rads}$$

$$\Theta = \frac{19}{18} \qquad \frac{11(19)^3}{x} = \frac{911}{18}$$

$$A^{p} = \frac{7}{7} (12)^{2} \sin(\frac{2}{3})$$

$$A^{p} = \frac{9}{7} c_{1}^{2} \sin(\frac{2}{3})$$

(3)
$$A_{\Delta} = \frac{1}{3}r^{3}\sin\theta$$

(4) $A_{seg} = A_{sec} - A_{\Delta}$
 $A_{\Delta} = \frac{1}{3}(144)(0.973)$
 $A_{seg} = \frac{1}{3}(144)(0.973)$
 $A_{seg} = \frac{1}{3}(144)(0.973)$
 $A_{seg} = \frac{1}{3}(144)(0.973)$

Applying our knowledge of rotations and radians...

- Ex. (a) If the large wheel rotates $2\pi/3$ radians, how many radians does the smaller wheel rotate?
 - (b) If the large wheel completes three revolutions, how much does the small wheel rotate in radians?
 - (c) If the small wheel rotates -15 π /4 radians, how many radians does the larger wheel rotate?

Angular Velocity

Angular velocity - amount of rotation around a central point per unit of time

$$v_a = \frac{\theta}{t}$$
 $\theta = \frac{a}{r}$
 $\theta = \frac{a}{r}$

Ex. The roller on a computer printer makes 2200 rpm (revolution per minute). Find the roller's angular velocity.

$$\frac{\partial \partial \mathcal{O}}{\partial x} = \frac{\partial \mathcal{O}}{\partial x} = \frac{$$

Two flywheels are connected by a belt, as shown in the diagram below. The larger one has a radius of 6 cm and the smaller one has a radius of 2 cm.

- (a) If the small wheel rotates –300°, then through how many radians does the large wheel rotate?
- (b) If the large wheel rotates $\frac{7\pi}{6}$ radians, what distance would a point on the circumference of the small wheel rotate?

Ex. A small electrical motor turns at 2200 rpm.

- (a) Express the angular velocity in rad/s.
- (b) Find the distance a point 0.8cm from the center of rotation travels in 0.008 s.

$$\frac{\text{2600 rpm } \times 500 \text{ rpm}}{\text{min}} = 17.6 \times \text{mgr } 00066 \quad (20)$$

$$V_{\alpha} = \frac{Q}{t} = \frac{440000 \text{ rods}}{\text{poin}} = \frac{440000 \text{ rods}}{600 \text{ sec}} = \frac{440000 \text{ rods}}{600 \text{ sec}}$$

$$Q = Qr$$
 $Q = (1.8434 rads)(0.8 cm)$
 $Q = [1.47 cm]$

Homework

Ex. A Ferris Wheel rotates 3 times each minute. The passengers sit in seats that are 5 m from the center of the wheel. What is the angular velocity of the wheel in radians per second? What distance do the passengers travel in 6.5 seconds?

Answer: a)
$$V_a = 0.3 \text{ H rads/sec}$$

b) $\alpha = 10.3 \text{ m}$

Ex. A bicycle wheel has a radius of 36 cm and is turning at 4.8m/s. Determine the any velocity of this wheel?