Warm Up

Differentiate:

(1)
$$f(x) = e^{\log \sqrt{x}} - 3^{\cos^{-1}(\ln x^5)} + Arc \sec(\tan^2 \sqrt{x})$$

$$\mathcal{Z}_{i}(x) = G_{politik}\left(\frac{|x|\nu}{1}|x|^{politik}\right) \left(\frac{9\eta x}{1}\right) - \frac{3}{3}ce_{1}(1\nu x_{2})\left(1^{2}\sqrt{\frac{1-(\mu x_{2})}{1-1}}\right)\left(\frac{x}{2}x_{1}\right) + \frac{1}{1}\frac{9^{1/2}\left(\frac{4\pi y_{1}y_{2}}{1-1}\right)}{1}(9)\left(\frac{4\pi y_{2}}{1-1}\right)\left(\frac{3\eta x}{1-1}\right)$$

Problems with homework?

Antiderivatives

Up to this point in our study of calculus, we have been concerned primarily with the problem:

Given a function, find its derivative.

Many important applications of calculus involve the inverse problem:

Given the derivative, find the original function.

"The basic problem of differentiation is: given the path of a moving point, to calculate its velocity, or given a curve, to calculate its slope. The basic problem of integration is the inverse: given the velocity of a moving point at every instant, to calculate its path, or given the slope of a curve at each of its points, to calculate the curve."

For example, suppose we are given the following derivatives: f'(x) = 2, $g'(x) = 3x^2$ h'(t) = 4t

Our goal is to determine f(x), g(x), and h(x) that have the respective derivatives given above. If we make some educated guesses, what would these functions be????

$$f(x) = \partial x + C$$
 $g(x) = x^3 + C$ $h(t) = \partial t^3 + C$

This operation of determining the original function from its derivative is the inverse operation of differentiation and we call it <u>antidifferentiation</u>.

<u>Definition:</u> A function F is called an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

"F(x) is an antiderivative of f(x)"

It should be emphasized that if F(x) is an antiderivative of f(x), then F(x) + C (C is any constant) is also an antiderivative of f(x).

Antiderivatives

Definition A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Example:

$$F(x) = \frac{x^2}{2} \qquad \qquad F'(x) = x$$

What about
$$F(x) = \frac{x^2}{2} + 2$$
?

Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is F(x) + C

where C is an arbitrary constant.

General antiderivatives are considered a family of curves...

Here is an example of a family of general antiderivatives:

Antidifferentiation Rules...

Constants:

Determine the antiderivative of any constant

$$f'(x)=3$$
 $f(x)=-4$
 $f(x)=3x+C$ $f(x)=-4x+C$

Rule:

$$f(x) = k \implies F(x) = kx + C$$

Bring exponent down (multiply it by the constant)
rewrite your base and then subtract one
from the original exponent

How will we put the power rule in reverse?

ie. If
$$f'(x) = 6x^2$$
 what is $f(x) = 6x^3 + C$

Flip your brain into reverse...what will be the rule used to antidifferentiate power rules?

Rule:

$$f(x) = kx^n \implies F(x) = \frac{k}{n+1}x^{n+1} + C$$

Add one to the exponent and divide by this NEW exponent

Determine the general antiderivative of each of the following...

(1)
$$f(x) = x^{5} - 2x^{4} - 3x^{3} + \frac{2}{x^{2}} + 5x^{-3} + 5$$

 $f(x) = x^{5} - 3x^{4} - 3x^{3} + 3x^{-3} + 5x^{-3} + 5$
 $F(x) = \frac{x^{6}}{6} - \frac{3x^{5}}{5} - \frac{3x^{4}}{4} + \frac{3x^{-1}}{-1} + \frac{5x^{3}}{2} + 5x + C$
 $F(x) = \frac{1}{6}x^{6} - \frac{3}{5}x^{5} - \frac{3x^{4}}{4} - \frac{3}{2} - \frac{5}{2}x^{3} + 5x + C$
(2) $f(x) = 3\sqrt{x} - \frac{2}{5x^{4}} + \sqrt[5]{x^{7}} - \frac{6\sqrt{x}}{x^{2}} + e^{2}$
 $f(x) = 3x^{1/5} - \frac{3}{5}x^{-4} + x^{1/5} - 6x^{1/5}x^{-3} + e^{3}$
 $f(x) = 3x^{1/5} - \frac{3}{2}x^{-4} + x^{1/5} - 6x^{1/5}x^{-3} + e^{3}$
 $f(x) = 3x^{1/5} - \frac{3}{2}x^{-1/5} + \frac{1}{15}x^{3} + \frac$

constants power rules

- logarithmic functions
- trigonometric functions
- exponential functions
- inverse trigonometric functions
- chain rules

Table of some of the Most General Antiderivatives

where a is a constant!

Function, f(x)	Most General Antiderivative, F(x)
a	ax + C
$ax^n (n \neq -1)$	$\frac{a}{n+1}x^{n+1}+C$
$\frac{a}{x} (x \neq 0)$	$a \ln x + C$
ae ^{kx}	$\frac{a}{k}e^{kx}+C$
a^{kx}	$\frac{a^{x}}{k \ln a} + c$
a coskx	$\frac{a}{k}\sin kx + C$
a sin kx	$-\frac{a}{k}\cos kx + C$
a sec² kx	$\frac{a}{k} \tan kx + C$
a sec kx tan kx	$\frac{a}{k} \sec kx + C$
a csckx cot kx	$-\frac{a}{k}\csc kx + C$
$a \csc^2 kx$	$-\frac{a}{k}\cot kx + C$
$\frac{a}{\sqrt{1-(kx)^2}}$	$\frac{a}{k}\sin^{-1}kx + C$
$\frac{a}{1+\left(kx\right)^2}$	$\frac{a}{k}\tan^{-1}kx + C$

Practice:

Page 408 #1, 2, 3