
Warm Up

Predict the products for the following reaction, and identify each reactant as an acid or a base.

Conjugate acid-base pairs
two substances that differ by a proton

Ex. H20 and H30t NH4t and NH3

Revised Arrhenius Theory

Bronsted-Lowry Theory

Water Equilibrium

Conductivity is due to the presence of ions. For water:

$$H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)}$$

- therefore $K = \underline{[H^+][OH^-]}$ is very small $[H_2O]$
- slight conductivity shows that equilibrium greatly favors water molecules (less than 2 H+ per billion water)
- therefore the concentration of water in pure water and in dilute aqueous solutions is essentially constant and can be combined with the equilibrium constant to produce a new constant called the *Ion Product Constant*

Ionization Constant for water (ion product constant)

$$K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$$
 at SATP

Since [H+] and [OH-] are found in 1:1 ratio $(H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)})$

 $[H_{(aq)}^+] = [OH_{(aq)}^-] = 1.0 \times 10^{-7} \text{ mol/L in } \mathbf{neutral} \text{ solutions.}$

<u>Arrhenius's Theory</u> - acid is a substance that ionizes water t produce H⁺ ions.

- additional ions produced by the acid increases the H ⁺ concentration in the water. (more acid, more H ⁺)

Therefore acids always have a $[H^+] > 10^{-7}$ mol/L

Basic solutions produce a [OH-] greater than 10-7 mol/L

K_w can be used to calculate either [H⁺] or [OH-]

since
$$K_w = [H^+] [OH^-]$$
 then $[H^+] = K_w / [OH^-]$

and
$$[OH-] = K_w / [H+]$$

H20(e) =
$$\frac{11}{120}$$

K[H20] = $\frac{1}{120}$

pH and pOH

$$pH = -log[H^{+}_{(aq)}]$$
 $pOH = -log[OH^{-}_{(aq)}]$ $[H^{+}_{(aq)}] = 10^{-pOH}$ $[OH^{-}_{(aq)}] = 10^{-pOH}$ $pH + pOH = 14.00$

Ex. Calculate the pH of a solution where $[H^{+}_{(aq)}] = 3.24 \times 10^{4} M$.

$$pH = -log[H^{+}]$$
 $pH = -log[3.24x10^{-4}]$
 $pH = -log[3.24x10^{-4}]$
 $pH = 3.489$
 $pH = 3.489$
 $pH = 3.489$
 $pH = 3.09x10^{-4}$

Strong Acids

Calculate the concentration of the hydroxide ions, pH and pOH of a 0.15 mol/L solution of hydrochloric acid at 25°C.

Strong acids will always completely ionize