Warm-Up

8. Copy and complete the table.

Translation	Transformed Function	Transformation of Points		
vertical	y = f(x) + 5	$(x, y) \rightarrow (x, y + 5)$		
H	y = f(x + 7)	$(x, y) \rightarrow (x-7, y)$	h=-7	
\mathcal{H}	y = f(x - 3)	$(\nu,\mathcal{E}+\chi)\leftarrow(\nu,\chi)$	h =3	
V	y = f(x) - 6	$(x,y) \rightarrow (x,y-6)$) K=-6	
horizontal and vertical	y+9=f(x+4)	$(x,y) \rightarrow (x-4,y-6)$	1) h=-4	K = -9
horizontal and vertical	y=5(x-4)-6	$(x, y) \rightarrow (x + 4, y - 6)$	h=4	K=-6
H+V	4=5(x+2)+3	$(x, y) \rightarrow (x - 2, y + 3)$	h= -0	£=3
horizontal and vertical	y = f(x - h) + k	(x,y) -> (x+h,y	4K)	

Questions from Homework

(a)
$$h(x) = f(x-a) = f(x-a)$$

(b) $h(x) = f(x-a) = f(x-a)$

(c) $f(x-a) = f(x-a)$

(d) $f(x-a) = f(x-a)$

(e) $f(x-a) = f(x-a)$

(f) $f(x-a) = f(x-a)$

(g) $f($

Transformations:

New Functions From Old Functions

Translations

Stretches

Reflections

Reflections and Stretches

Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
 - developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis. (vertical reflection)

• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis. (horizontal)

invariant point

- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

Example 1

Compare the Graphs of y = f(x), y = -f(x), and y = f(-x)

- a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x).
- **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)?

Remember...

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.

Remember...

- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis.
- Sketch y = f(-x) on the axis below

Homework Page 28 #1, 3, 4

1. a) Copy and complete the table of values for the given functions.

X	f(x) = 2x + 1	g(x) = -f(x)	h(x) = f(-x)
-4	-7	7	_
-2	-3	3	5
0	1	-)	ا
2	5	-5	-3
4	9	- 9	

 $(x,y) \rightarrow (x,-y)$

- 3. Consider each graph of a function.
 - Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes.
 - State the equation of the reflected function in simplified form.
 - State the domain and range of each function.

Domain: [X|X = 0,XER]
Range: [y] y=0,yER]

K(x)=-1 Domain: [x|x+0,xer] Plange: [y|y+0,yer]

9(x)=x+

g(x)=x+1 Domain: {x|xen} Range:{y|y21,yee h(x)=-x-1 Domain. [X|XEB] ·Prange Eyly=-1,yER]

stretch + compression

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between
 0 and 1 result in the ex. 1 2 0.3
 point moving closer to
 the line of reflection;
 scale factors greater
 than 1 result in the
 point moving farther
 away from the line of
 reflection

Vertical and Horizontal Stretches (See page 20)

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis. (x,y)
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$ If b < 0, then the graph is also reflected in the y-axis.

Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

Example 2

Graph y = af(x)

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

a)
$$g(x) = 2f(x)$$

b)
$$g(x) = \frac{1}{2}f(x)$$

- **a)** g(x) = 2f(x)
- stretched by a factor of 2

The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is $\{x \mid -6 \le x \le 6, x \in \mathbb{R}\}, \text{ or } [-6, 6],$ and the range is

 $\{y \mid 0 \le y \le 4, y \in \mathbb{R}\}, \text{ or } [0, 4].$

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in \mathbb{R}\}$, or [0, 8].

$$(x,y) \rightarrow (x,2y)$$
-6,4
-6,8

- 6,0
- 9,0 9,0
- 6,8 6,4

b)
$$g(x) = \frac{1}{2}f(x)$$

The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is

 $\{x \mid -6 \le x \le 6, x \in \mathbb{R}\}, \text{ or } [-6, 6],$

and the range is

 $\{y \mid 0 \leq y \leq 4, \, y \in \, \mathbb{R}\}, \, \text{or} \, [0,\, 4].$

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 2, y \in R\}$, or [0, 2].

Horizontal Stretch or Compression... (reciprocals)

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Example 3

Graph y = f(bx)

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

b)
$$g(x) = f(\frac{1}{2}x)$$

The invariant point is

For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -2 \le x \le 2, x \in R\}$, or [-2, 2], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

$$(x,y) \longrightarrow (\frac{1}{2}x,y)$$

$$(-4, 4)$$
 $(-2, 4)$

$$(a, 0)$$
 $(1, 0)$ $(4, 4)$ $(a, 4)$

b)
$$g(x) = f(\frac{1}{2}x)$$

The invariant point is (0, 2).

For f(x), the domain is $\{x \mid -4 \le x \le 4, x \in R\}$, or [-4, 4], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -8 \le x \le 8, x \in R\}$, or [-8, 8], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

Horizontal Stretch or Compression...

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

Page 28 # 2, 5-10, 14

$$y = -3f(5(x-2)) + 1$$

 $a = -3$ $b = 5$ $h = 3$ $k = 1$

- · vertical reflection in x-axis
- · Vertical stretch by a factor of 3 · horizontally compressed by a factor of $\frac{1}{5}$ · translated 2 units right · " I unit up.

