Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

(1)
$$y = 3f(x)$$

 $a = 3$ $(x,y) \Rightarrow (x,3y)$
 $b = 1$ $(x,y) \Rightarrow (-3x,y)$
 $b = \frac{1}{3}$ $(x,y) \Rightarrow (-3x,y)$
 $b = -3x$
 $b = -3x$
 $b = -3x$
 $b = -3x$
 $a = -$

Summary of Transformations...

Questions from Homework

6. The graph of the function y = f(x) is vertically stretched about the *x*-axis by a factor of 2.

$$(x,y) \longrightarrow (x,\partial y)$$

- R: {y+8 < y < 8, y < R}
- 2. a) Copy and complete the table of values

for the given functions			a= 1/3
X	$f(x)=x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$
-6	36	108	19
-3	9	27	3
0	0	O	0
3	9	27	3
6	36	108	19
		1	1

Questions from Homework

10. Thomas and Sharyn discuss the order of the transformations of the graph of y = -3|x| compared to the graph of y = |x|. Thomas states that the reflection must be applied first. Sharyn claims that the vertical stretch should be applied first.

- **b)** Sketch the graph of y = -3|x| by applying the stretch first.
- c) Explain your conclusions. Who is correct? Neither

Extend

14. Consider the function f(x) = (x + 4)(x - 3). Without graphing, determine the zeros of the function after each transformation.

a)
$$y = 4f(x)$$

b)
$$y = f(-x)$$
 hor isolation $(x,y) \rightarrow (-x)$

c)
$$y = f\left(\frac{1}{2}x\right)$$
 b= $\left(x,y\right)$

d)
$$y = f(2x)$$
 $b = 3$ $(x,y) \rightarrow (x,y)$

a (-4,0) + (3,0)

Transformations:

g(x) = -3f(4(x-4)) - 10

2. The function y = f(x) is transformed to the b = 4 function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by k = -10 filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the by a factor of \bullet . It is vertically stretched about the \bullet by a factor of \bullet . It is reflected in the \bullet , and then translated \bullet units to the right and \bullet \(\frac{1}{2} \) \(\frac{1}

Transformations:

$$y = f(x)$$
 \longrightarrow $y = af(b(x-h)) + k$

Mapping Rule:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

b)
$$y = f(3x + 6)$$

a)
$$y = 3f(2x)$$
 $a=3$ $b=3$ $k=0$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the x-axis by a factor of 3.

b)
$$y = f(3x + 6)$$
 $0 = 1$ $0 = 3$ $0 = -3$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.

Homework

Page 38 # 3-6

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.

Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x).

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed function is

How could you use the mapping $(x, y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$ to verify this equation?

17. The graph of the function y = 2x² + x + 1 is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of ¹/₃, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.