Questions from Homework

6. The graph of the function y = f(x) is vertically stretched about the x-axis by a factor of 2. $\alpha = 3$

$$D: \{x \mid -6 \leq x \leq 6, x \in R \}$$

$$\alpha \left[-6,6 \right]$$

- R: {y+8 < y < 8 , y < 8 } or [-8,8]
- 2. a) Copy and complete the table of values for the given functions

for the given functions.			a= 1/3
X	$f(x)=x^2$	g(x) = 3f(x)	$h(x) = \frac{1}{3}f(x)$
-6	36	108	19
-3	9	27	3
0	0	0	0
3	_9	27	3
6	36	108	19

Questions from Homework

10. Thomas and Sharyn discuss the order of the transformations of the graph of y = -3|x| compared to the graph of y = |x|. Thomas states that the reflection must be applied first. Sharyn claims that the vertical stretch should be applied first.

- **b)** Sketch the graph of y = -3|x| by applying the stretch first.
- c) Explain your conclusions. Who is correct? Neither

Extend

14. Consider the function f(x) = (x + 4)(x - 3). Without graphing, determine the zeros of the function after each transformation.

a)
$$y = 4f(x)$$
 $\alpha = 4$

b)
$$y = f(-x)$$
 horizontal $(x, y) =$

c)
$$y = f\left(\frac{1}{2}x\right)$$
 b= $\begin{cases} x, y \end{cases} \Rightarrow (3x)$

d)
$$y = f(2x)$$
 b=3 $(x,y) \rightarrow (5x,y)$

$$x+4=0 | x-3=0$$

 $x=-4 | x=3$

Summary of Transformations...

Transformations:

$$y = f(x)$$
 \longrightarrow $y = af(b(x-h)) + k$

Mapping Rule:

$$(x,y) \rightarrow \left(\frac{1}{b}x + h, ay + k\right)$$

Important note for sketching...

Transformations should be applied in following order:

- 1. Reflections
- 2. Stretches
- 3. Translations

Remember....RST

Warm-Up...

Given that (-2, 5) is a point on the graph of y = f(x), determine the coordinates of this point once the following transformations are applied...

$$a=3 b=1 h=0 K=0$$
(1) $y=3f(x)$
(x,y) $\rightarrow (+x+0, 3y+0)$
(x,y) $\rightarrow (+x,3y)$
(-2,5) $\rightarrow (-2,15)$

(2)
$$y = f\left(-\frac{1}{3}x\right)$$

(x,y) \longrightarrow (3x,y)
(-2,5) \longrightarrow (6,5)

(3)
$$y = 4f\left[\frac{1}{2}(x+5)\right] - 3$$

$$(x,y) \rightarrow [3x-5, 4y-3]$$

$$(-3,5) \rightarrow (-9,17)$$

$$a = -3 b = -3 h = 3 k = 5$$

$$(4) y - 5 = -2f(-2x + 6)$$

$$y = -2f(-2(x - 3)) + 5$$

$$(x,y) \rightarrow (-3x + 3, -3y + 5)$$

$$(-2,5) \rightarrow (4, -5)$$

Transformations:

$$9(x) = -3f(4(x-4)) - 10$$

2. The function y = f(x) is transformed to the function g(x) = -3f(4x - 16) - 10. Copy and complete the following statements by filling in the blanks.

The function f(x) is transformed to the function g(x) by a horizontal stretch about the \square by a factor of \square . It is vertically stretched about the \square by a factor of \square . It is reflected in the \square , and then translated \square units to the right and \square units down.

0) y axis b) 4 c) x axis d) 3 e) x axis 5) 4 9) 10

Example 1

Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

b)
$$y = f(3x + 6)$$

a)
$$y = 3f(2x)$$
 $a=3$ $b=3$ $k=0$

The graph of y = f(x) is horizontally stretched about the *y*-axis by a factor of $\frac{1}{2}$ and then vertically stretched about the *x*-axis by a factor of 3.

b)
$$y = f(3x + 6)$$
 $0 = 1$ $b = 3$ $h = -2$ $k = 0$ $y = f(3(x+2))$

The graph of y = f(x) is horizontally stretched about the y-axis by a factor of $\frac{1}{3}$ and then horizontally translated 2 units to the left.

Questions From Homework

- 3. Copy and complete the table by describing the transformations of the given functions, compared to the function y = f(x).

 Function

 Function

 Function

 Function y 4 = f(x 5) y + 5 = 2f(3x) $y = \frac{1}{2}f(\frac{1}{2}(x 4))$ y + 2 = -3f(2(x + 2))Function y 4 = f(x 5) y + 5 = 2f(3x) y 5 = 2f(3x) y 6 = 2f(3x) y 7 = 2f(3x) y 7
- **6.** The key point (-12, 18) is on the graph of y = f(x). What is its image point under each transformation of the graph of f(x)?

b)
$$y = -3f(-\frac{2}{3}x - 6) + 4$$
 Factor First

 $y = -3f(-\frac{2}{3}(x + 9)) + 4$
 $0 = -3$
 $b = -\frac{2}{3}$
 $h = -9$
 $(x, y) \longrightarrow (-\frac{2}{3}x - 9, -2y + 4)$
 $(-\frac{2}{3}x - 9, -2y + 4)$
 $(-\frac{2}{3}x - 9, -2y + 4)$

Example 3

Write the Equation of a Transformed Function Graph

The graph of the function y = g(x)represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form y = af(b(x - h)) + k. Explain your answer.

Solution

Locate key points on the graph of f(x) and their image points on the graph of g(x).

$$(-4, 4) \rightarrow (-8, 10)$$

$$(0, 0) \rightarrow (-7, 2)$$

$$(4, 4) \rightarrow (-6, 10)$$

The equation of the transformed function is g(x) = 2f(4(x + 7)) + 2.

O Reflections! None

@ Vertical Stretch Factor: 8 = 3 $\alpha = 2$ (Compare Prange New) 4

(Compare Domain New)

(Compare Domain New)

1 Horizontal Translation: (0,0) = (7,2) Left 7

B Vertical Translation: (0,0) > (-7,2) Up 2 K= 2

6 = (x)= 25(4(x+7))+3

* Check using Key Points: How could you use the mapping $(x, y) \rightarrow (\frac{1}{b}x + h, ay + k)$ to verify this equation?

 $(4,4) \longrightarrow (-6,10)$

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). Determine the equation of g(x) in the form $y = -f(\frac{1}{5}(x-3))$ y = af(b(x - h)) + k.

0 vertical reflection (-a)

- @ vertical stretch factor: New = 4 = 1 a=1
- $\frac{New}{0\lambda} < \frac{80}{4} = 5 \quad b = 1$ 3 horizontal "
- Θ horizontal translation: right $3 \rightarrow h = 3$ Pick a point where x=0 $(0,4) \longrightarrow (3,-4)$
- 6 vertical translation: no change K=0 Pick a point where y=0
 (1,0) -> (8,0)

Homework

Page 38 # 3-6 Plus 7, 8, 9 (a, c, e) and 10 17. The graph of the function y = 2x² + x + 1 is stretched vertically about the x-axis by a factor of 2, stretched horizontally about the y-axis by a factor of ¹/₃, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.

is stretched vertically about the *x*-axis by a factor of 2. stretched horizontally about the *y*-axis by a factor of $\frac{1}{3}$, and translated 2 units to the right and 4 units down. Write the equation of the transformed function.