Questions from homework

Sequences

Find the first 5 terms of the following sequences:

$$t_{n} = 3^{n}$$

$$t_{1} = 3^{1} = 3$$

$$t_{2} = 3^{2} = 9$$

$$t_{3} = 3^{3} = 37$$

$$t_{4} = 3^{4} = 81$$

$$t_{5} = 3^{5} = 343$$

$$t_{5} = 3,9,37,81,343$$

$$t_n = n + 5$$
 $(6,7,8,9,10)$

$$t_n = (n+2)(n-1)$$

$$t_n = (3)(0) = 0$$

$$t_n = (4)(1) = 4$$

$$t_n = (5)(3) = 10$$

$$t_n = (6)(3) = 10$$

$$t_n = (6)(3) = 18$$

$$t_n = (6)(3) = 18$$

$$t_n = (6)(3) = 18$$

Arithmetic Sequences

Ex: 2, 5, 8, 11, 14

• The difference between each term is constant.

- In the sequence 2, 5, 8, 11, 14. the difference between each term is 3.
- The difference is called 'd''. $d = t_2 t_1 = t_3 t_3 = t_4 t_3$
- The first term is called "a" or " t_1 ".
- The second term is called 't₂".
- general term • The last term or an indicated term is called t_n ".
- The position of a term or the number of terms is calledn".

Arithmetic Sequences

To find any given term in an arithmetic sequence we use the following formula:

$$t_n = a + (n-1)d$$

Example I.

Find the indicated term of the following sequence

1, 4, 7...
$$d=3$$
 t_7 $t_n = \alpha + (n-1)d$
 $t_7 = 1 + (1-1)3$
 $t_7 = 1 + (6)(3)$
 $t_{7} = 1 + (8)(3)$
 $t_{7} = 1 + (8)(3)$
 $t_{17} = 1 + (8)(3)$
 $t_{17} = 1 + (8)(3)$

We can also determine the number of terms in the sequence.

$$t_n = a + (n-1)d$$

Example II.

How many terms are in the following sequences?

How many terms are in the following sequences?

(Solve for "n")

1, 3, 5,... 71

$$3 = 1 + (n-1) = 1 +$$

Find "a", "d", and "t_n" for the following sequence

$$\frac{4}{7}$$
, $\frac{7}{10}$, $\frac{13}{16}$, $\frac{19}{19}$, $\frac{20}{25}$
 $t_5 = 16$, $t_8 = 25$
 $t_n = \alpha + (n-1)d$ | $t_n = \alpha + (n-1)d$ | Elimination Method

 $t_5 = \alpha + (5-1)d$ | $t_8 = \alpha + (8-1)d$ | $\alpha + 7d = 25$ | $\alpha + 46 = 16$
 $t_8 = \alpha + 4d$ | $t_8 = \alpha + 7d$ | t

Find tn:

$$a=4$$
 $t_n=a+(n-1)d$
 $d=3$ $t_n=4+(n-1)3$
 $n=n$ $t_n=4+3n-3$
 $t_n=3n+1$

Homework

#1 #2 #3 #4 #6

#7

Geometric Sequences

Ex: 2, 4, 8, 16, 32

Sequences of numbers that follow a pattern of multiplying a fixed number from one term to the next are called geometric sequences.

- To find the next term, multiply the previous term by a common ratio.
- In the sequence 2, 4, 8, 16, 32 we are multiplying by 2.
- This common ratio is called r'' $(r = t_2/t_1)$.
- The first term is still called a" or "t₁".
- The second term is called "t₂".
- The last term or an indicated term is called t_n ".
- The position of a term or the number of terms is calledn".