Catalog of Essential Functions

1. Linear

Straight Line

Equation will be degree one

Should be able to identify the slope, intercepts, and equation from the graph

2. Quadratic

Parabola (U-Shaped)

Either *y or x* will be squared (not both!)

Should know the 4 basic quadratic functions

Should be able to apply transformations to the basic quadratic functions

3. Cubic

We will work with functions that are raised to the third power

max 3 roots

Catalog of Essential Functions

4. Absolute Value

5. Square Root

6. Exponential

V-Shaped

Equation will have a variable within the absolute value bars

Should be able to apply transformations to the basic absolute value function

Half Parabola

Equation will have a variable under the square root sign

Should be able to apply transformations to the basic square root function

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

$$y = \sqrt{y}$$

Steadily increasing or decreasing

Base will be a number and variable will appear in the exponent

Should be able to identify the *horizental* asymptote

Catalog of Essential Functions

7. Reciprocal

Will have two branches

Equation will have a variable within the denominator of a rational expression

Should be able to identify the *vertical and horizontal asymptotes*

8. Circle

- General form: $(x h)^2 + (y k)^2 = r^2$
 - * center: (n, k) = (0,0) * radius = r
- Be able to identify the function that would describe either just the top or bottom of the circle.

$$(x-0)^{3}+(y-0)^{2}=5^{3}$$

 $(x^{3}+y^{3}=35)$

9. Ellipse

• General form: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Where...

- Center: (h, k) = (0,6)
- a > b
- If *a* is the denominator of the "*y*" term the ellipse will have a vertical major axis.

$$\frac{(x-0)^3 + (y-0)^3}{3} = 1$$

$$\sqrt{\frac{R}{X_9} + \frac{Q}{A_9}} = \sqrt{\frac{R}{X_9}}$$

" Horizontal Major Axis

Transformations:

New Functions From Old Functions

Translations (Slide Transformation)

Stretches

Reflections

Translations

- Focus on...

 determining the effects of h and k in y k = f(x h) on the graph of y = f(x)• sketching the graph of y k = f(x h) for given values of h and k given the graph of y k = f(x h) for given values
- of h and k, given the graph of y = f(x)
- · writing the equation of a function whose graph is a vertical and/or horizontal translation of the graph of

$$y = f(x)$$
 Base: $y = x^3$

Ex: $0 y = (x-3)^3 + 2$
 $y = f(x)$
 $y = f(x)$

Bose. y = |x|

Function Notation
$$g(x) = f(x+2) - 1$$

$$h = -3 \rightarrow Leff$$

$$K = -1 \rightarrow Pown$$

Translation

- To translate or shift a graph is to move it up, down, left, or right without changing its shape.
- Translation is summarized by the following table and illustration:

```
Vertical and Horizontal Shifts Suppose c > 0. To obtain the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward y = f(x) - c, shift the graph of y = f(x) a distance c units downward y = f(x - c), shift the graph of y = f(x) a distance c units to the right y = f(x + c), shift the graph of y = f(x) a distance c units to the left
```

Translations illustrated...

Using Mapping Notation to Describe Transformations:

*Think of this as a set of instructions to follow to transform a graph. *Think of this as a set of instructions to follow to transform a graph. *Think of this as a set of instructions to follow to transform a graph. *Think of this as a set of instructions to follow to transform a graph.								
Х	$y = x^2$		Х	$y=x^2+2$		X	$y=(x-5)^2$	
-3	9		-3	11		2	9	
-2	4		-2	6		3	4	
-1	1		-1	3		4	1	
0	0		0	2		5	0	
1	1		1	3		6	1	
2	4		2	6		7	4	
3	9		3	11		8	9	
	$(x,y) \rightarrow (x,y+2)$						→ (x45, y)	
			m Notation					

Identify the translations for each of the following...

Determine the Equation of a Translated Function:

Right 4 h=4

Down 9 K=-9

$$g(x) = f(x-4)-9$$

$$g(x) = f(x-4)-6$$

- Translations are transformations that shift all points on the graph of a function up, down, left, and right without changing the shape or orientation of the graph.
- The table summarizes translations of the function y = f(x).

Function	Transformation from $y = f(x)$	Mapping	E <i>x</i> ample
y - k = f(x) or $y = f(x) + k$	A vertical translation If $k > 0$, the translation is up. If $k < 0$, the translation is down.	$(x, y) \rightarrow (x, y + k)$	y - k = f(x), k > 0 $y = f(x)$ $y - k = f(x), k < 0$
y = f(x - h)	A horizontal translation if $h > 0$, the translation is to the right. If $h < 0$, the translation is to the left.	$(x, y) \rightarrow (x + h, y)$	y = f(x - h), h > 0 $y = f(x)$ $y = f(x)$

• A sketch of the graph of y - k = f(x - h), or y = f(x - h) + k, can be created by translating key points on the graph of the base function y = f(x).

Homework

Page 12 #1, 2, 4, 8