
Energy Changes / Reaction Enthalpies

Major Topics

- Total Energy
- Calorimetry
- Hess's Law
- Heats of Formation
- Multi-Step Problems

Total Energy

Calculate the total energy change if 25.0g of water at 12.0C is completely converted to steam at 120.°C.

Time

Calorimetry

7.37 g of sodium nitrate is dissolved in 100. mL of water at an initial temperature of 16.3°C. The final temperature of the solution is 25.1°C. Calculate the molar enthalpy of solution, H_s , for sodium nitrate.

$$\frac{NaND_3}{4} + 20$$

$$\frac{1}{5} = -9$$

$$\frac{1}{5} = -VC\Delta T$$

Hess's Law

$$2NO_{2(g)}$$
 \longrightarrow $N_{2(g)}$ + $2O_{2(g)}$ $H_r = ?$

Calculate the standard enthalpy change for this reaction using the following information:

Heats of Formation

Ex. What is the standard molar enthalpy of combustion of methane fuel?

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$$

$$AH_r = \sum_{i=1}^{n} H_{fi} - \sum_{i=1}^{n} H_{fi}$$

$$AH_r = -1535 \text{ kJ}$$

$$AH_r = -1535 \text{ kJ}$$

$$H_r = AH_r = -1535 \text{ kJ/mo}$$

$$M_r = -1535 \text{ kJ/mo}$$

Multi-Step Problems

Ex. $2\text{NaHCO}_{3(s)} + 129.2\text{kJ} \longrightarrow \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$ What quantity of energ \mathbf{M} H_r, is required to decompose 100. kg of $NaHCO_{3(s)}$?

$$Hr = \frac{\Delta Hr}{h} = \frac{129.2 \, \text{kJ}}{2 \, \text{mol}} = 64.6 \, \text{kJ/mol}$$