Introduction to Trigonometric Equations

trigonometric equation

 an equation involving trigonometric ratios

Focus on...

- algebraically solving first-degree and second-degree trigonometric equations in radians and in degrees
- verifying that a specific value is a solution to a trigonometric equation
- identifying exact and approximate solutions of a trigonometric equation in a restricted domain
- determining the general solution of a trigonometric equation

Did You Know?

In equations, mathematicians often use the notation $\cos^2 \theta$. This means the same as $(\cos \theta)^2$.

Let's start with basic LINEAR trigonometric equations...

...Pre-Calculus 110

Solve: $\sin \theta = 0.9659$, $-360^{\circ} < 9 < 720^{\circ}$

- Reference angle?
- Which quadrants?
- Any co-terminal angles acceptable?
- If the domain is in degrees, give solutions in degrees.
- If the domain is in radians, give solutions in radians.

$$\sin \theta = 0.9659$$
, $-360^{\circ} < \theta < 720^{\circ}$ Where is $\sin \theta$ positive $\overline{\Theta} = \sin^{-1}(0.9659)$

$$\overline{\Theta} = 75^{\circ}$$

$$\Theta = 75^{\circ}$$

$$\Theta = 180^{\circ} - \overline{\Theta}$$

$$\Theta = 105^{\circ}$$

To find angles between -360° and 720°
$$75^{\circ}-360^{\circ}=-285^{\circ}$$
 $75^{\circ}+360^{\circ}=435^{\circ}$ $105^{\circ}-360^{\circ}=-265^{\circ}$ $105^{\circ}+360^{\circ}=465^{\circ}$

Solve:
$$\sec \theta = -1.3054$$
, $-2\pi \le 0 \le 2\pi$ (radions)

(reciprocal)

 $\cos \theta = -0.7660$ $\theta = \pi + \overline{\theta}$
 $\overline{\theta} = \cos^{-1}(0.7660)$ $\theta = 3.14 + 0.698$
 $\overline{\theta} = 0.698$

Find angles between -3π and 3π
 $2.443 - 6.38 = -3.838$
 $3.838 - 6.38 = -3.443$

Solutions:

 $\theta = -3.838$, -3.443 , 3.443 , 3.838

Exact Valus -> No Calculators

Ex.
$$\sqrt{2}\cos\theta + 1 = 0$$
, $-360^{\circ} \le \theta \le 720^{\circ}$

Ex.
$$\sqrt{2}\cos\theta + 1 = 0$$
, $-360^{\circ} \le \theta \le 720^{\circ}$
 $\sqrt{2}\cos\theta = -1$
 $\cos\theta = -1$
 \cos

Find angles between
$$-360^\circ$$
 and 730°
 $135^\circ -360^\circ = -335^\circ$
 $335^\circ +360^\circ = 495^\circ$
 $335^\circ +360^\circ = 585^\circ$

Exact Value -> No Calculator

Ex. $\sin x + 1 = 0, -2\pi \le x \le 4\pi$

Your Turn

Solve each trigonometric equation in the specified domain.

a)
$$3 \cos \theta - 1 = \cos \theta + 1, -2\pi \le \theta \le 2\pi$$

b)
$$4 \sec x + 8 = 0, 0^{\circ} \le x < 360^{\circ}$$

Check Up:

/radians

$$\cot \theta = 0.7834$$
 $0 < \theta < 2\pi$

Where is tand positive

$$0 = \overline{A}$$

$$0 = \overline{A}$$

Solutions:

Degrees

$$2\cos\theta - 5 = -6$$
 $-360^{\circ} < \theta < 360^{\circ}$

Where is roso negative?

Solutions'

Questions from Homework

3) c)
$$5-\tan^3\theta = 4$$
, $-180^\circ \le \theta \le 360^\circ$
 $-\tan^3\theta = -1$ where is $\tan\theta$ (4/-)
 $\tan^3\theta = 1$ $\theta = 45^\circ$ $\theta = 350^\circ$ $\theta = 350^\circ$ $\theta = 315^\circ$
 $\theta = 45^\circ$ $\theta = 45^\circ$ $\theta = 350^\circ$ $\theta = -1351^\circ$ $\theta = -45^\circ$

Let's move onto QUADRATIC trigonometric equations...

...Pre-Calculus 110

- What strategies can we use to solve quadratic equations?
- Quadratic trigonometric equations will ultimately become TWO linear trigonometric equations.

Solve: $2x^2 + x = 1$

Solve: $2\sin^2 x + \sin x = 1$, $0 \le x \le 4\pi$

Ex.
$$\cos^2 \theta - \frac{1}{2}\cos \theta = 0, -2\pi \le \theta \le 4\pi$$

Ex.
$$6 \sin^2 x - \sin x = 2, -2\pi \le \theta \le 4\pi$$

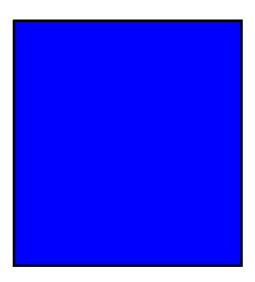
Your Turn

Solve for θ .

$$\cos^2 \theta - \cos \theta - 2 = 0, \, 0^\circ \le \theta < 360^\circ$$

Give solutions as exact values where possible. Otherwise, give approximate measures to the nearest thousandth of a degree.

General Solution of a Trigonometric Equation


Solve: $3\cos^2\theta - \cos\theta = 2$; $\theta \in \mathbb{R}$

Determine the general solution for $\sin^2 x - 1 = 0$ over the real numbers if x is measured in radians.

Did You Know?

2n, where $n \in I$, represents all even integers.

2n + 1, where $n \in I$, is an expression for all odd integers.

Determine the general solution for $\cos^2 x - 1 = 0$, where the domain is real numbers measured in degrees.

Practice Problems:

Pages 212 - 214 #11 - 23 Check-Up problem...

Solve:

 $\sin x \sec x + 2\sin x = 0$, $x \in R$ (x is measured in radians)

November 14, 2013

Unit Review...

What topics have we covered??

Review...

- **C4 a)** Determine all solutions for the equation $2 \sin^2 \theta = 1 \sin \theta$ in the domain $0^{\circ} \le \theta < 360^{\circ}$.
 - b) Are your solutions exact or approximate? Why?
 - **c)** Show how you can check one of your solutions to verify its correctness.

A grandfather clock shows a time of 7 o'clock. What is the exact radian measure of the angle between the hour hand and the minute hand?

Determine the angular velocity of the minute hand on a clock.

Solve: $6\sin^2\theta - 3\sin\theta = 0$, $0 \le \theta \le 360^\circ$

- [A] 0°,30°,180°,330°,360°
- [C] 30°,90°,120°,270°

- [B] 0°,30°,180°,150°,360°
- [D] 0°,180°,210°,330°,360°

If $\csc \theta < 0$ and $\tan \theta > 0$, then which of the following could be a possible measure of angle θ ?

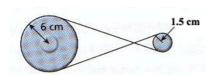
[A] $\frac{11\pi}{6}$

[B] $\frac{4\pi}{3}$

[C] $\frac{3\pi}{4}$

[D] $\frac{\pi}{2}$

What is the principal angle of $-\frac{25\pi}{4}$?


[A] $\frac{3\pi}{4}$

[B] $\frac{\pi}{4}$

[C] $-\frac{\pi}{4}$

[D] $\frac{7\pi}{4}$

If the belt in the pulley system below travels 30 cm, what is the angle of rotation of the smaller pulley?

- [A] $\frac{\pi}{9}$ radians
- [B] 20°
- [C] 20 radians
- [D] 5°

Nibbles the hamster is running at 0.02 m/s on an exercise wheel of radius 8 cm. What is the angular velocity of this wheel? [A] 0.15 rad/minute [B] 240 rad/minute [C] 0.25 rad/minute [D] 15 radians/minute

Solve: $2(1-\sin\theta)^2 + \sin\theta = 2(3-4\sin^2\theta)$, $-360^\circ \le \theta \le 720^\circ$

Daν	48 -	Tria	Equations	continued	after not	ebook
o a y	TU -	HILIM	Lyualions	CONTINUE	antenniot	CDOOR

November	14.	20	13
----------	-----	----	----

(a) Determine the angular velocity with which little Johnny is twirling the rope above his head.

[2]

(b) The rock comes flying from the rope 3 minutes after Mrs. Centripetal started to time little Johnny. How far did the rock travel during the 3 minutes?

Little Johnny has a rock tied to the end of a piece of rope 1.5 m long and he is swinging it around his head in a circular pattern. Mrs. Centripetal, his physics teacher, is watching Johnny out the window of her physics lab and notes that the rock is making 12 revolutions every 48 seconds.

Worksheet - Sketching Angles in Radians.doc