Acid - Base Theories

Revised Arrhenius Theory of Acids and Bases

- acids are hydrogen-containing compounds that ionize in aqueous solutions to give H⁺ HCI (H_3COOH) (CH_3COOH)

- bases ionize to give OH- ions

North (Natott) CASCH (CASTOLL)

Monoprotic Acid - one hydrogen will ionize Ex. HNO₃

H+NO3-

Diprotic Acid - two hydrogens will ionize Ex. H₂SO₄

H+ 504²⁻

<u>Triprotic Acid</u> - three hydrogens will ionize Ex. H₃PO₄

H+ PO4-

Advantage: it explained neutralization as H⁺ and OH⁻ combining to give H₂O

Disadvantage: not all hydrogen containing substances have acid properties (i.e., CH₄) and not all bases have OH- (NH₃).

Arrhenius

Revised Arhenius
Bransted-Laury

BRONSTED - LOWRY THEORY OF ACIDS & BASES

Bronsted-Lowry Acids and Bases

A new theory was needed because:

- (i) not all acid/base reactions involve water.
- (ii) not all bases contain hydroxide ions (N₂CO₃, NH₃).

<u>Bronsted - Lowry Acid</u> - a proton (hydrogen-ion) donor <u>Bronsted - Lowry Base</u> - a proton (hydrogen-ion) acceptor

- acids lose a proton to a water molecule (H⁺ is a proton!)

- bases gain a proton from a water molecule

$$Ex. \underbrace{\frac{\cancel{H}_2O}{H^{+}}}_{\cancel{H^{+}}} \underbrace{\frac{\cancel{B}}{NH_{3(aq)}}}_{\cancel{H^{+}}} \underbrace{\frac{\cancel{B}}{OH_{(aq)}}}_{\cancel{H^{+}}} + \underbrace{\frac{\cancel{A}}{NH_{4^{+}(aq)}}}_{\cancel{H^{+}}}$$

(H₂O acts as an acid, NH₃ acts as a base)

However water does not have to be present in order to have a proton exchange.

Ex.
$$HCl_{(g)} + NH_{3(g)} \longleftrightarrow NH_4^+_{(aq)} + Cl_{(aq)}$$

HCl donates a proton (acid) NH₃ accepts a proton (base)

<u>amphoteric (amphiprotic)</u> -substance that can act as a Bronsted-Lowry acid in some reactions and a Bronsted-Lowry base in other reactions.

Predict the products for the following reaction, and identify each substance as an acid or a base.

Conjugate Acid-Base Pairs

$$CH_3COOH_{(aq)} + H_2O_{(l)}$$
 $CH_3COO_{(aq)} + H_3O_{(aq)}^+$

Acid-Base reactions are at equilibrium!

(Look at forward reaction and reverse reaction)

- Every acid-base reaction at equilibrium has two acids and two bases.
- Acid on 'product' side is formed by addition of proton to base on 'reactant' side
- Base on 'product' side is formed by removal of a proton from acid on 'reactant' side

Conjugate acid-base pair

A pair of substances that differ by only a proton

Ex.

