Reactions in Aqueous Solutions

$$AgNO_{3(aq)} + NaCl_{(aq)} \Rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

Complete Ionic Equation

An equation that shows dissolved ionic compounds as dissociated free ions.

Spectator Ion

An ion that appears on both sides of the equation and is not directly involved in the reaction.

Net Ionic Equation

An equation for a reaction in solution that only shows the particles directly involved in the reaction.

*All net ionic equations must be balanced with respect to both mass and charge

Pbt Agt No₃⁻

$$Pb_{(s)} + 2AgNO_{3(aq)} \Rightarrow 2Ag_{(s)} + Pb(NO_{3})_{2(eq)}$$
metal

barium chloride and silver nitrate

Bacl2(09) + AgNO3(09) -> Ba(NO3)2(00) + AgCl(5)

Reactions in Aqueous Solutions

$$AgNO_{3(aq)} + NaCl_{(aq)} \Rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

$$Ag(a) + Nb(a) + Nb(a) + Cla) \rightarrow AgCls + Na(a) + Nb(a)$$

Homework

Worksheet

Solutions

Solution - homogeneous (uniform) mixture of a solute and a solvent.

```
⇒<u>solute</u> - substance dissolved

⇒<u>solvent</u> - substance doing dissolving (liquid)
```


If the amount of solute that can dissolve in a solvent is large, then the solute is said to have a*high solubility*.

If the amount of solute that can dissolve in a solvent is small, then the solute is said to have a*low solubility*.

Solid substances formed from reactions in solutions are known as **precipitates**.

What happens when an ionic compound dissolves??

This process is called solvation.