Check Homework - Worksheet

Kt Pb2+ NO3potassium and lead(11) nitrate

K(s) + Pb(Nb3)2009) -> Pb(s) + KNO3009)

K(s) + Pb(m) + NO3(cq) - Pb(s) + K+ NO3(cq)

ND3 (49)

2K(s) + Pb(s) - Pb(s) + 2K4

Solutions

<u>Solution</u> - homogeneous (uniform) mixture of a solute and a solvent.

```
⇒<u>solute</u> - substance dissolved
⇒solvent - substance doing dissolving (liquid)
```

Ex. Salt water solvent

What happens when an ionic compound dissolves??

This process is called solvation.

Solution Formation

There are three factors that affect how fast a substance will dissolve:

- 1) temperature
- 2) agitation (stirring)
- 3) surface area of dissolving particles

Concentration of a Solution

<u>concentration</u>- a numerical ratio comparing the quantity of solute to the quantity of solution.

 $\underline{\text{molar concentration (molarity)}}$ - the amount of $\underline{\text{moles}}$ of solute dissolved in one litre of solvent

⇒units: mol/L

<u>dilute</u> - a solution that has a small amount of solute as compared to the amount of solvent

<u>dilution</u> - process of adding more solvent to cause a solution to become more dilute

<u>concentrated</u> - a solution that has a large amount of solute as compared to the amount of solvent

Ex. An intravenous solution contains 0.90 g NaCl in 100.mL of solution. What is the molarity of this solution?

$$M = 0.90g$$
 0.90g Nacl x $\frac{1}{58.44} \frac{1}{9} \frac{1}{1} \frac{1}{1}$

Practice Problems

Worksheet