## **Solution Stoichiometry**

### SOLUTION STOICHIOMETRY

- the methods used to calculate the quantities of substances in solution.
- involves molar concentrations and the volumes of solutions.

### Sample Problem

Solutions of ammonia and phosphoric acid are used to produce ammonium hydrogen phosphate fertilizer. What volume of 14.8 mol/L NH<sub>aq</sub> is needed for the ammonia to react completely with 10.0 L of 12.9 mol/L  $\frac{1}{2}$ PO<sub>4(aq)</sub> to produce fertilizer?

$$2NH_{3(aq)}$$
 +  $H_3PO_{4(aq)}$   $\longrightarrow$   $(NH_4)_2HPO_{4(aq)}$ 

# **Titrations**

In solution stoichiometry, sometimes you don't have enough information to solve the problem on paper

Ex. 10 mL of acetic acid reacts with a 0.202 mol/L NaOH solution. What is the concentration of the acetic acid?

$$CH_{3}COOH_{(aq)} + NaOH_{(aq)} \rightarrow H_{2}O_{(l)} + NaCH_{3}COO_{(aq)}$$

$$x mol/L c = 0.202 mol/L$$

$$v = 0.0100 L v = ??? *****$$

\*\*\*\* you need this volume in order to solve the problem

**titration**= procedure used to find the volume of substances to help calculate concentration

a solution (titrant) is transferred from a precisely marked tube called a buret to a flask containing another sample and an indicator

an indicator (eg. methyl orange, bromothymol blue) is used because a sudden change in colour indicates the completion of the reaction

endpoint- the point where the titrant reacts completely with the sampleequivalence point- volume needed to reach the endpoint

A minimum of 3 trials is needed to ensure results are accurate



http://www.youtube.com/watch?v=YDzzMcrdyB4



#### Example

A 10.00 ml sample of hydrochloric acid was titrated with a standardized solution of 0.685 mol/L NaOH. Bromothymol blue indicator was used and it changes from yellow to green at the endpoint. What is the concentration of hydrochloric acid?

Note: hydrochloric acid "is titrated with" NaOH flask buret

#### Titration Results:

| Trial                  | 1 overshoot | 2     | 3     | 4     |
|------------------------|-------------|-------|-------|-------|
| Final Volume<br>(mL)   | 11.30       | 22.25 | 33.05 | 44.05 |
| Initial Volume<br>(mL) | 0.20        | 11.30 | 22.25 | 33.05 |
| Volume NaOH (mL) HC1   | 11.10       | 10.95 | 10.80 | 11.00 |
| Endpoint<br>Colour     | blue        | blue  | blue  | blue  |

## **EXAMPLE:** Calculating Molarity from Titration Data

Titration reveals that 11.6 mL of 3.0 M sulfuric acid are required to neutralize the sodium hydroxide in 25.00 mL of NaOH solution. What is the molarity of the NaOH solution?

#### **Solution:**

$$H_2SO_{4(aq)} + 2NaOH_{(aq)} \longrightarrow 2H_2O_{(l)} + Na_2SO_{4(aq)}$$



0.300M

PH = 3

NaOHan -> Nath + OHan

O.300M

0.300M 0.300M

pot = log [OH]

PH + POH = 14.00

Weak Bases

Mt3(09) + H20(e) = NH4+ + Otton

0.3001

Kb = [NHyTOH], [NHyT] = [OH]

Ks = [OH-)2 TM3]

KaKb = Kw

LM3)  $K_b = \frac{Kw}{Ka} = 1.0 \times 10^{-14}$  pH+pH=14.00

$$H50_{3}^{-} + H_{20} \rightarrow 50_{3}^{2*} + H_{30}^{+}$$
 $H50_{3}^{-} + H_{20} \rightarrow H_{250_{3}} + 0H^{-}$