SOLUTIONS => CHAPTER 6 - CHAPTER TEST

MULTIPLE CHOICE

1. Which parabola corresponds to the greatest value of c, the constant coefficient in the function $y = ax^2 + bx + c$?

A.

B.

C.

D.

2. Which of these equations represents the parabola shown?

A.
$$y = -x(x-5) + 1$$

$$C. y = -x^2 + 6x - 5$$

B.
$$y = -x^2 - 6x + 5$$

D.
$$y = -(x-5)^2 + 1$$

- 3. What is the vertex of $f(x) = -0.5(x+4)^2 2$? Vertex (-4,-2)
 - A. (4, -2)

- **B.** (-2, -4) **C.** (2, -4) **D.** (-4, -2)
- 4. What is the equation of the axis of symmetry of f(x) = -5x(x-7) + 21?

Ly 2 points with a y-coordinate of 21. $\frac{-3x=0}{-5} \quad \text{or} \quad x-7=0$ x=7

X=0 (0,21) (7,21)

Axis of Symmetry is midway between these points. X = 0+1

A. x = 7

B. x = 0

C. x = 3.5 D. x = -7

5. Which equation is a quadratic equation in standard form?

A.
$$-3x^3 + 2x - 5 = 0$$
 B. $2x^2 - 5x = 15$ **C.** $f(x) = 2x^2 + 3x - 5$

B.
$$2x^2 - 5x = 15$$

C.
$$f(x) = 2x^2 + 3x - 5$$

- $(D.)4x^2 6x + 5 = 0$
- 6. Select the one correct statement about the quadratic equations corresponding to these graphs.
 - A. Equation I has no solution.
 - (B.) Equations I and III each have at least one real solution.
 - C. Each equation has at least one real solution.
 - D. Equation II has two solutions.
- 7. The graphs of $f(x) = 5.5x^2 + x 1.1$ and g(x) = 4x(3 x) are shown. Estimate the roots of $5.5x^2 + x - 1.1 = 4x(3 - x)$.

A.
$$x = -0.1$$
 and $x = -1.2$

A.
$$x = -0.1$$
 and $x = -1.2$ C. $x = -0.1$ and $x = 1.3$
B. $x = 1.3$ and $x = 8.8$ D. $x = -1.2$ and $x = 8.8$

B.
$$x = 1.3$$
 and $x = 8.8$

D.
$$x = -1.2$$
 and $x = 8.8$

8. Which of the following are roots of $x^2 - 9x - 52 = 0$?

$$A = M$$

 $L \Rightarrow x^2 - 9x - 52 = 0$
 $(x - 13)(x + 4) = 0$
 $x - 13 = 0 \text{ or } x + 4 = 0$
 $x = 13 = 0 \text{ or } x = 4$

A.
$$x = -4$$
 and $x = -13$

$$C.x = -4 \text{ and } x = 13$$

B.
$$x = 4$$
 and $x = -13$

D.
$$x = 4$$
 and $x = 13$

10. Which parabola corresponds to the quadratic function $y = 2x^2 + 4x - 16$?

$$y = x^{2} + 2x - 8$$

$$0 = x^{2} + 2x - 8$$

$$0 = (x + 4)(x - 2)$$

$$x + 4 = 0 \text{ or } x - 2 = 0$$

$$x = -4$$

$$x = 2$$

- 11. Can you solve $x^2 + 14x 19 = 0$ by factoring? How do you know?
 - (A.) No; $14^2 4(1)(-19) = 272$, which is not a perfect square.
 - **B.** Yes; $14^2 4(1)(-19) = 272 > 0$.
 - C. Yes; because $14^2 4(1)(-19) = 272$, which is a perfect square.
 - D. It is not possible to answer this question.
- 12. Use the quadratic formula to determine which of the following are roots of the equation $4.4x^2 + 4.3x - 5 = 0$.

$$\chi = -b \pm \sqrt{b^2 - 4ac}$$

$$X = -4.3 \pm \sqrt{(4.3)^2 - 4(4.4)(-5)}$$

$$\chi = -4.3 \pm \sqrt{106.49}$$

$$\chi = -4.3 \pm 10.3$$

$$\chi = -4.3 + 10.3$$
 or $\chi = -4.3 - 10.3$

$$= 2 \times = 0.68$$

$$\chi = -1.66$$

A.
$$x = 0.68$$
 and $x = 1.66$

A.
$$x = 0.68$$
 and $x = 1.66$ C. $x = 0.68$ and $x = -1.66$

B.
$$x = -0.68$$
 and $x = 1.66$

B.
$$x = -0.68$$
 and $x = 1.66$ **D.** $x = -0.68$ and $x = -1.66$

NUMERICAL RESPONSE

13. a) Identify the following information for the parabola shown.

x-intercepts:
$$(3, 0)$$
, $(1, 0)$ y-intercept: $(0, 2)$ axis of symmetry: $x = 1$ vertex: $(1, 3)$

b) What is the range of the function corresponding to this parabola? range: $\{y \mid y \leq 3, y \in \mathbb{R}\}$

14. The roots of
$$x^2 + 17x - 38 = 0$$
 are $x = -19$ and $x = 2$.

$$\begin{array}{c} 4 \times x^{2} + 17x - 38 = 0 \\ (x + 19)(x - 2) = 0 \\ x + 19 = 0 \text{ or } x - 2 = 0 \\ x = -19 \qquad x = 2 \end{array}$$

16. The quadratic function y = -5x(x + 4) + 7 has been partially factored.

$$\chi = 0$$

L>Axis of Symmetry: x = 0-4

a) Determine the equation of the axis of symmetry of the function: x = -2.

$$y = 30 + 7$$

- b) Locate the vertex of the function: (2, 27)
- c) Write the function in vertex form: $y = -5(x + 2)^2 + 27$

17. Suppose you were to use the quadratic formula to solve these equations. What values of *a*, *b*, and *c* would you use in each case?

a)
$$3x^2 - 2x + 1 = 0$$

b)
$$-2(x-1)^2-1=0$$

$$a = 3$$
, $b = 2$, $c = 1$

$$a = -2$$
, $b = 4$, $c = -3$

$$\begin{array}{c} -2(x-1)(x-1)-1 \\ -2(x^2-1x-1x+1)-1 \\ -2(x^2-2x+1)-1 \\ -2x^2+4x-2-1 \end{array}$$

 $-2x^2+4x-3$

18. Use the quadratic formula to determine the exact roots of each quadratic equation.

a)
$$7x^2 + 3x - 2 = 0$$

roots: $\chi = 3 \pm 6.5$

b)
$$-4x^2 - 2x + 3 = 0$$

roots: $\chi = \frac{-1 \pm \sqrt{13}}{4}$

$$y = a (x-h)^{2} + K$$

$$y = a (x+3)^{2} - 2$$

$$= y = \frac{1}{3} (x+3)^{2} - 2$$

To determine "a":

$$1 = a(-6+3)^2-2$$

 $1 = a(-3)^2-2$
 $1 = a(9)-2$
 $1 = 9a-2$
 $3 = 24$

