Questions from Homework

Remember!

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(8)
$$f(x) = \frac{4x^3}{3x+3}$$
 $f(x+h) = \frac{4(x+h)^3}{3(x+h)+2}$ $f(x+h) = \frac{4(x^2+3xh+h^2)}{3x+3h+2}$

$$f(x+h) = \frac{4(x+h)^2}{3(x+h)+2}$$

$$f(x+h) = \frac{4(x^2+3xh+h^2)}{3x+3h+2}$$

$$F'(x) = \lim_{h \to 0} \frac{4x^38xh + 4h^3}{3x + 3h + 3} - \frac{4x^3}{3x + 3}$$

Multiply
everything by
$$(3x + 3)(3x + 3h + 3)$$

=
$$l_{1}m$$
 $l_{2}x^{3}h + l_{3}xh^{3} + l_{6}xh + 8h^{3}$
 $h + l_{3}xh^{3} + l_{6}xh + 8h^{3}$

=
$$\lim_{h\to 0} \frac{1}{K(3x+a)(3x+3h+a)} = \frac{12x^2+16x}{(3x+a)^3}$$

Remember!

If
$$f(x) = x^2 + 7x$$
, find $f'(3)$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Hint: find the derivative first then substitute 3 into that

$$f(x) = (x+h)^2 + 7(x+h)$$

$$f(x+h) = (x+h)^2 + 7(x+h)$$

$$f(x+h) = (x+h)^2 + 7(x+h)$$

$$f(x) = \lim_{h \to 0} \frac{h}{3xh + h_3 + JP}$$

$$f'(x) = 2x+7$$
 \rightarrow slope of the tangent

Differentiation Rules

I. Constant Functions

• Sketch the function y = 2

What is the slope of the tangent to this graph?

Recall: slope of the tangent is the derivative

The derivative of a constant will always be equal to "0".

$$\partial = (x)E$$

$$f(x) = 30$$

$$f(x) = 6$$
 $f(x) = 30$ $f(x) = 6x + 5$
 $f'(x) = 0$ $f'(x) = 0 + 0$

Formal Proof:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h}$$
$$= \lim_{h \to 0} 0 = 0$$

II. Power Functions

We want to come up with a rule to differentiate functions of the form $f(x) = x^n$, $x \in \mathbb{R}$

Using the definition of a derivative to differentiate f(x) would lead to ...

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h}$$

$$= \lim_{h \to 0} \frac{x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4}{h}$$

$$= \lim_{h \to 0} \frac{4x^3h + 6x^2h^2 + 4xh^3 + h^4}{h}$$

$$= \lim_{h \to 0} (4x^3 + 6x^2h + 4xh^2 + h^3) = 4x^3$$

Other examples we have looked at so far

$$f(x) = x^{2}$$

$$f(x) = x^{3}$$

$$f'(x) = 3x^{2}$$

Do you see a pattern emerging?

The Power Rule (General Version) If n is any real number, then

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

The Power Rule (General Version) If n is any real number, then

$$\frac{d}{dx}\left(x^{n}\right) = nx^{n-1}$$

Let's practice using the power rule...

Differentiate each of the following functions:

1.
$$f(x) = x^{25}$$

$$f(x) = x^{-5}$$

$$f'(x) = 35x^{-6}$$

$$f'(x) = -5x^{-6}$$

$$f'(x) = -5$$

3.
$$f(x) = \frac{1}{x^{10}}$$

 $f(x) = x^{-10}$
 $f'(x) = -10x^{-11}$

4.
$$f(x) = \sqrt{x}$$

$$f(x) = x^{3}$$

$$f'(x) = \frac{1}{3}x^{3}$$

$$f'(x) = \frac{1}{3}x^{3}$$

$$f'(x) = \frac{1}{3}x^{3}$$

Constant Multiples

The following formula says that the derivative of a constant multiplied by a function is the constant multiplied by the derivative of the function:

The Constant Multiple Rule If c is a constant and f is a differentiable function, then

$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}f(x)$$

EXAMPLE 4

(a)
$$\frac{d}{dx}(3x^4) = 3\frac{d}{dx}(x^4) = 3(4x^3) = 12x^3$$

(b)
$$\frac{d}{dx}(-x) = \frac{d}{dx}[(-1)x] = (-1)\frac{d}{dx}(x) = -1(1) = -1$$

Examples:

1.
$$f(x) = 4x^3$$

$$F'(x) = 13x^{3}$$

3.
$$f(x) = 5x^{\frac{6}{5}}$$

2.
$$f(x) = \frac{8}{x^2}$$

$$f(x) = 8x^{-3}$$

$$f'(x) = -16x^{-3}$$

$$f'(x) = \frac{-16}{x^3}$$

4.
$$f(x) = (3x^2)^2$$

$$F'(x) = 36x^3$$

Recall the derivative of a function is equal to the slope of a line that is tangent to the function.

Find the slope of the tangent line to the function at the given "x" coordinate!

$$f(x) = 3x^{2}$$
 at $x = 4$
 $f'(x) = 6x$
 $f'(4) = 64$
 $= 84$

(3) a)
$$f(x) = 3x^3$$
, $x = \frac{1}{3}$

$$f'(x) = 6x^3$$

$$f'(\frac{1}{3}) = 6(\frac{1}{3})^3$$

$$= 6(\frac{1}{4})$$

$$= 64$$

$$= 64$$

$$= 64$$

Homework

a)
$$f(x) = x^5$$
 (2,32)

$$0 f'(x) = 5x^{4}$$

(a)
$$f'(a) = 5(a)^4$$

= $5(6)$
= 80

3
$$y-y_1 = m(x-x_1)$$

 $y-32 = 80(x-2)$
 $y-32 = 80x-160$
 $y-32 = 80x-160$
 $y-32 = 80x-160$
 $y-32 = 80x-160$