

Let's Review:

- Simplifying Radicals
- Pythagoras Theorem
- Basic Trigonometric Properties

Radical Review

Simplify

$$\sqrt{12}$$
 $5\sqrt{27}$ $\sqrt{2\cdot 2\cdot 3}$ $5\sqrt{3\cdot 3\cdot 3}$ $\sqrt{3}$ $\sqrt{3}$

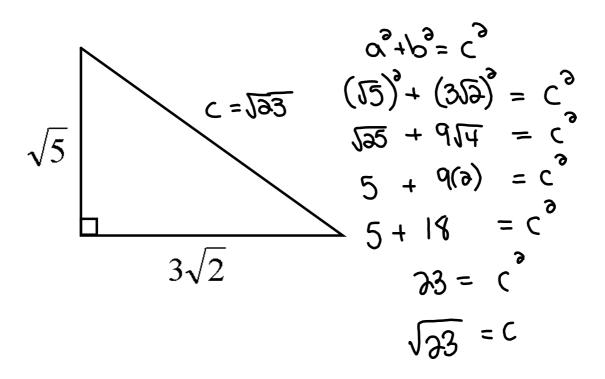
$$5\sqrt{8} + 4\sqrt{18}$$
 $5\sqrt{3.3.3} + 4\sqrt{3.3.3}$
 $10\sqrt{5} + 10\sqrt{5}$
 $30\sqrt{5}$

Rationalizing the Denominator

$$\frac{5}{\sqrt{2}} \cdot \sqrt{5}$$

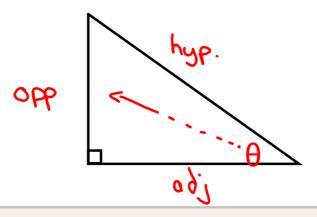
$$8\sqrt{2}$$
 • $\sqrt{8}$

$$6\sqrt{8}$$
 • $\sqrt{8}$


Think Conjugates!

$$(8-\sqrt{2})(3+\sqrt{5})$$

 $(2-\sqrt{5})(3+\sqrt{5})$


$$(2-\sqrt{5})(2+\sqrt{5})$$

Think Pythagorean Theorem!

Determine the length of the idicated side!

Trigonometric Ratios

$$\sin \theta = 0$$

$$\cos \theta = \frac{\alpha}{b}$$

$$\tan \theta =$$
 $\frac{\circ}{\varsigma}$

$$\sin \theta = \frac{0}{h}$$
 $\cos \theta = \frac{a}{h}$ $\csc \theta = \frac{h}{a}$

$$\sec \theta = \frac{h}{6}$$

$$\cot \theta = \frac{\alpha}{Q}$$

Reciprocal Secant is the reciprocal of sine Primary secant " " " cosine Ratios cotangent " " " tangent Ratios

Homework

Trig&3SpaceCourseOutline.doc