

Let's Review:

- Simplifying Radicals
- Pythagoras Theorem
- Basic Trigonometric Properties

Radical Review

Simplify

Rationalizing the Denominator

$$
\begin{array}{ll}
\frac{5}{\sqrt{2}} \cdot \sqrt{2} & \frac{8 \sqrt{2}}{6 \sqrt{8}} \cdot \sqrt{8} \\
\frac{5 \sqrt{2}}{2} & \frac{8 \sqrt{16}}{6 \sqrt{64}} \rightarrow \frac{32}{48} \rightarrow \frac{2}{3}
\end{array}
$$

Think Conjugates

$$
\begin{aligned}
& (8-\sqrt{2})(2+\sqrt{5}) \\
& (2-\sqrt{5})(2+\sqrt{5}) \\
& \frac{16+8 \sqrt{5}-2 \sqrt{2}-\sqrt{10}}{4+2 \sqrt{5}-2 \sqrt{5}-5} \\
& \frac{16+8 \sqrt{5}-2 \sqrt{2}-\sqrt{10}}{-1} \\
& \sqrt{10}+2 \sqrt{2}-8 \sqrt{5}-16
\end{aligned}
$$

Determine the length of the idicated side!

Trigonometric Ratios

Homework

(4) Trig\&3SpaceCourseOutline.doc

