Principal Angles

The smallest positive coterminal angle between 0 and 360° or 2_{TL} .

- 1) Divide By 360°(how many rotations?).
- 2) Get rid of # of full rotations.
- 3) Mulitply decimal by 360°to find principal angle.

$$0.1058\pi \div 3\pi = 1058\pi \times \frac{1}{3} = \frac{1068\pi}{3} = 529 = 176.3$$

$$= 176.3$$

$$\frac{\mathcal{E}}{\mathcal{E}} = \mathcal{H} \times \frac{\mathcal{E}}{\mathcal{E}} \otimes$$

For each angle in standard position, determine one positive and one negative angle measure that is coterminal with it.

b)
$$-\frac{5\pi}{4}$$

$$b_{0} - \frac{5\pi}{4}$$

$$0 - \frac{5\pi}{4} + \frac{2\pi}{1} = -\frac{5\pi}{4} + \frac{8\pi}{4} = \boxed{\frac{3\pi}{4}}$$

Example

Refer to Figure 8. Suppose we have a circle of radius 10cm and an arc of length 15cm. Suppose we want to find (a) the angle θ , (b) the area of the sector OAB, (c) the area of the minor segment (shaded).

Figure 8. The shaded area is called the minor segment.

a)
$$\alpha = \Theta_{\Gamma}$$

15 = $\Theta(0)$

Area of Sidor = Central Angle

1.5 = Θ

Tradians

Learn - $\frac{X}{100^3} = \frac{1.5}{3-17}$

Learn - $\frac{X}{100^3} = \frac{1.5}{3-17}$
 $X = \frac{1.5017}{3-17} = \frac{1.5}{3-17}$

C) Step 1:

Area = $\frac{1}{3} \sin(0) \sin(0.5)$

Area = $\frac{1}{3} \sin(0.5)$

Area = $\frac{1}{3} \cos(0.4975)$

Area of Segment = Area of Sector - Area of triangle

= $\frac{1}{3} - \frac{1}{3} \cos(0.4975)$
 $\frac{1}{3} \cos(0.4975)$

Area of Segment = Area of Sector - Area of triangle

Key Ideas

- Angles can be measured using different units, including degrees and radians.
- An angle measured in one unit can be converted to the other unit using the relationships 1 full rotation = 360° = 2π.
- An angle in standard position has its vertex at the origin and its initial arm along the positive x-axis.
- Angles that are coterminal have the same initial arm and the same terminal arm.
- An angle θ has an infinite number of angles that are coterminal expressed by θ ± (360°)n, n ∈ N, in degrees, or θ ± 2πn, n ∈ N, in radians.
- The formula $a = \theta r$, where a is the arc length; θ is the central angle, in radians; and r is the length of the radius, can be used to determine any of the variables given the other two, as long as a and r are in the same units.

Homework

Page 176: #7, 9, 11, 13, 17, 18

Extra Practice

Sketch the following angles.

Questions from Homework

Applying our knowledge of rotations and radians...

Ex. (a) If the large wheel rotates $2\pi/3$ radians, how many radians does the smaller wheel rotate?

- (b) If the large wheel completes three revolutions, how much does the small wheel rotate in radians?
- (c) If the small wheel rotates -15 π /4 radians, how many radians does the larger wheel rotate?

Angular Velocity

Angular velocity - amount of rotation around a central point per unit of time

$$v_a = \frac{\theta}{t}$$

$$\theta = \frac{a}{r}$$

$$\theta = \frac{a}{r}$$

$$v_a = \text{angular velocity}$$

$$t = \text{time}$$

$$\theta = \frac{a}{r}$$

$$a = \text{arc length}$$

$$t = \text{radius}$$

Ex. The roller on a computer printer makes 2200 rpm (revolution per minute). Find the roller's angular velocity.

Homework

Page 176: #14, 15, 16

Find the area of the shaded region

