### **Warm Up**

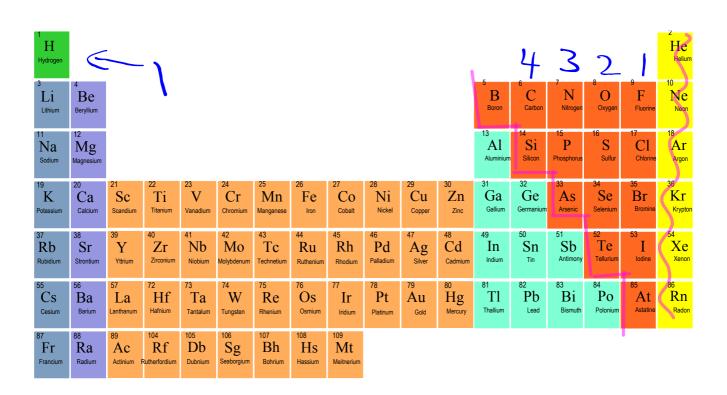
Name the following compounds:

- 1) P<sub>2</sub>F<sub>4</sub> molecular
- diphosphorous Letvafluoride
- 2)  $Na_2S$  ionic  $Na_2S$  ionic

- 3) N<sub>2</sub>O molecular
- dinitrogen monoxide
- 4)  $NH_4NO_3$  ionic  $NH_4^{\dagger}NO_3^{\dagger}$

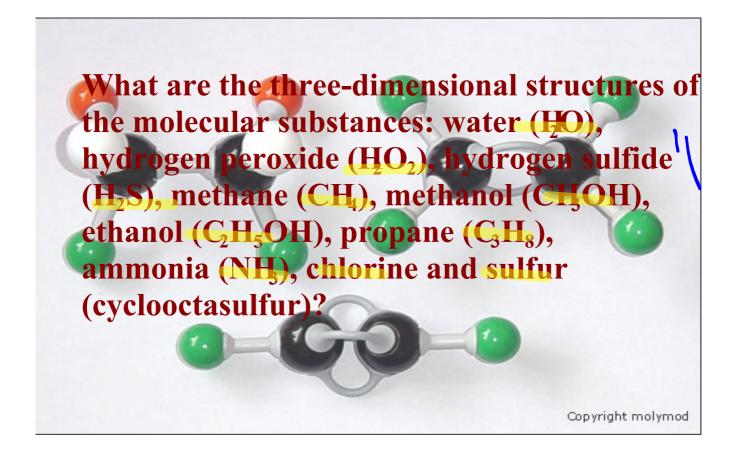
ammonium nitrate

Worksheet p. 270 #20-25


# **Bonding Capacity**

H

S


N

Cl



| Cerium I            | 59<br>Pr<br>Praseodymium | Neodymium          | Promethium            | Samarium     | Europium              | Gadolinium | Tb                    | Dy Dysprosium           | Ho<br>Holmium           | Erbium  | Tm                       | Ytterbium   | 71<br>Lu<br>Lutetium    |
|---------------------|--------------------------|--------------------|-----------------------|--------------|-----------------------|------------|-----------------------|-------------------------|-------------------------|---------|--------------------------|-------------|-------------------------|
| 90<br>Th<br>Thorium | Protactinium             | 92<br>U<br>Uranium | 93<br>Np<br>Neptunium | Pu Plutonium | 95<br>Am<br>Americium | 96<br>Cm   | 97<br>Bk<br>Berkelium | 98<br>Cf<br>Californium | 99<br>Es<br>Einsteinium | Fermium | 101<br>Md<br>Mendelevium | No Nobelium | 103<br>Lr<br>Lawrencium |

### **Molecular Models**



| Name  | Molecular<br>Formula | Structural Diagram |  |  |  |  |
|-------|----------------------|--------------------|--|--|--|--|
| water | H <sub>2</sub> O     | H-0-H              |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |
|       |                      |                    |  |  |  |  |

## Naming and Writing Formulas for Acids and Bases

#### **Reminder:**

Acids are aqueous hydrogen compounds that turn blue litmus red.

Bases are aqueous solutions of ionic hydroxides that turn red litmus blue.

#### IDENTIFYING ACIDS AND BASES FROM FORMULA'S

Most acid can be identified from **starting with H**or ending in COOH.

i.e. HCl, H<sub>2</sub>SO<sub>4</sub>, CH<sub>3</sub>COOH

Note: NH<sub>3</sub> and CH<sub>4</sub> are not acids!

Most bases can be identified from ending in -OH

Bases are named using the rules for naming ionic compounds.

Ex. NaOH sodium hydroxide

When naming acids, common names (for common acids) or IUPAC names can be used.

#### Classical Acid Names

- used the suffix -ic Ex. sulfuric
- used hydro and the suffix -ic Ex. hydrochloric
- used suffix -ous Ex. sulfurous
- and others (see inside back cover)

#### IUPAC (modern) Acid Names

- name the acid as an aqueous hydrogen compound Ex. aqueous hydrogen sulfide -  $H_2S_{(aq)}$ 

## **Rules for Naming Acids**

| 1. If anion ends in -ide, the acid is "hydroic acid |
|-----------------------------------------------------|
|-----------------------------------------------------|

2. If anion ends in -ate, the acid is "\_\_\_\_\_ic acid"

3. If anion ends in -ite, the acid is "\_\_\_\_\_ous acid"

p. 271-273

**EXERCISE** # 26-33