Warm Up Name the following compounds: - 1) P₂F₄ molecular - diphosphorous Letvafluoride - 2) Na_2S ionic Na_2S ionic - 3) N₂O molecular - dinitrogen monoxide - 4) NH_4NO_3 ionic $NH_4^{\dagger}NO_3^{\dagger}$ ammonium nitrate Worksheet p. 270 #20-25 # **Bonding Capacity** H S N Cl | Cerium I | 59
Pr
Praseodymium | Neodymium | Promethium | Samarium | Europium | Gadolinium | Tb | Dy Dysprosium | Ho
Holmium | Erbium | Tm | Ytterbium | 71
Lu
Lutetium | |---------------------|--------------------------|--------------------|-----------------------|--------------|-----------------------|------------|-----------------------|-------------------------|-------------------------|---------|--------------------------|-------------|-------------------------| | 90
Th
Thorium | Protactinium | 92
U
Uranium | 93
Np
Neptunium | Pu Plutonium | 95
Am
Americium | 96
Cm | 97
Bk
Berkelium | 98
Cf
Californium | 99
Es
Einsteinium | Fermium | 101
Md
Mendelevium | No Nobelium | 103
Lr
Lawrencium | ### **Molecular Models** | Name | Molecular
Formula | Structural Diagram | | | | | |-------|----------------------|--------------------|--|--|--|--| | water | H ₂ O | H-0-H | ## Naming and Writing Formulas for Acids and Bases #### **Reminder:** Acids are aqueous hydrogen compounds that turn blue litmus red. Bases are aqueous solutions of ionic hydroxides that turn red litmus blue. #### IDENTIFYING ACIDS AND BASES FROM FORMULA'S Most acid can be identified from **starting with H**or ending in COOH. i.e. HCl, H₂SO₄, CH₃COOH Note: NH₃ and CH₄ are not acids! Most bases can be identified from ending in -OH Bases are named using the rules for naming ionic compounds. Ex. NaOH sodium hydroxide When naming acids, common names (for common acids) or IUPAC names can be used. #### Classical Acid Names - used the suffix -ic Ex. sulfuric - used hydro and the suffix -ic Ex. hydrochloric - used suffix -ous Ex. sulfurous - and others (see inside back cover) #### IUPAC (modern) Acid Names - name the acid as an aqueous hydrogen compound Ex. aqueous hydrogen sulfide - $H_2S_{(aq)}$ ## **Rules for Naming Acids** | 1. If anion ends in -ide, the acid is "hydroic acid | |---| |---| 2. If anion ends in -ate, the acid is "_____ic acid" 3. If anion ends in -ite, the acid is "_____ous acid" p. 271-273 **EXERCISE** # 26-33