Warm Up

Calculate the amount of heat released when a 375 g piece of aluminum is cooled from 24.3°C to 15.6°C.

$$Q = ?$$
 $m = 3759$
 $C = 0.900 = ?$
 $Q = mCDT$
 $Q = (3759)(0.900 = ?)(-8.7°)$
 $Q = (-8.7°)$
 $Q = (-8.7°)$

Homework - Worksheet #1-7

$$\begin{array}{lll}
\text{Ti} = 95.0^{\circ}\text{C} & \text{Ti} = 95.0^{\circ}\text{C} \\
\text{Te} = 30.0^{\circ}\text{C} & -1.63\times10^{3}\text{J} = (550\text{g})\text{C}(-65.0^{\circ}\text{C}) \\
\text{Te} = 30.0^{\circ}\text{C} & -1.63\times10^{3}\text{J} & (550\text{g})\text{C}(-65.0^{\circ}\text{C}) \\
\text{Q} = -1.63\times10^{3}\text{J} & (550\text{g})\text{C}(-65.0^{\circ}\text{C}) \\
\text{C} = 0.046 & \text{J} \\
\text{G} = 0.046 & \text{J} \\
\text{G} = 0.046 & \text{J} \\
\text{C} = 0.0012 & \text{J} \\
\text{C} = 0.0012 & \text{J} \\
\text{C} = 3.32 & \text{J} \\
\text{C} = 0.0012 & \text{C} \\
\text{C} = 0.0012 &$$

1) 31 200 J

- 7) 0.0456 J/g °C
- 2) -31 700 J
- 8) 424 g

3) 120°C

9) 2.60 J/g °C

4) 28°C

10) 6.21 J

5) 1100 J

11) 42.6 L

6) 14 900 J

PHASE CHANGE AND ENTHALPY

Classifying types of systems:

- 1. <u>Open system</u> a system where both matter and energy can flow into or out of the system.
- 2. <u>Closed system</u> a system where energy is allowed to be transferred into and out but matter cannot be transferred.
- 3. <u>Isolated system</u> a system where neither matter nor energy is allowed to enter or leave the system.

ENTHALPY (H) - The total internal (potential) energy and kinetic energy of a system under constant pressure.

⇒Enthalpy is usually expressed in kJ.

ENTHALPY CHANGE (Δ H) - A change under constant pressure where the surroundings of a system absorb energy or release it to the system.

PHASE CHANGE - is a change in the state of matter without a change in the chemical composition of the system. Ex. $H_2O_{(1)} \longrightarrow H_2O_{(g)}$

⇒always involve a change in energy but never involve a change in temperature.

Question:

- (i) What is the temperature where water just starts boiling?
- (ii) What is the temperature when water is boiling violently?
- (iii) If energy is still going into the water and the temperature is not increasing, where is the energy going?

Consider melting ice to water and then boiling water to steam:

heat heat
$$H_2O_{(s)} -----> H_2O_{(l)} -----> H_2O_{(g)}$$

MOLAR ENTHALPY

For any system:

- an exothermic change involves a decrease in enthalpy
- ⇒gives off energy to the surroundings
- \Rightarrow H (and \triangle H) is negative.
- an endothermic change involves an increase in enthalpy.
- ⇒takes in energy from the surroundings
- \Rightarrow H (and \triangle H) is positive.

The enthalpies for substances undergoing phase changes have been measured experimentally. (TABLE 17.3 p. 522)

- enthalpies are reported as molar enthalpies and are expressed as kJ/mol.