Understanding Logarithms

- Focus on...

 demonstrating that a logarithmic function is the inverse of an the line q = xexponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

Questions from Homework

- 5. Identify the following characteristics of the graph of each function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - iii) the y-intercept, to one decimal place if necessary
 - iv) the x-intercept, to one decimal place if necessary
 - a) $y = -5 \log_2 (x + 3)$
 - **b)** $y = \log_e (4(x+9))$
 - c) $y = \log_5 (x + 3) 2$
 - **d)** $y = -3 \log_2 (x + 1) 6$

d)
$$y = -3\log_3(x+1) - 6$$

 $a = -3$ $b = 1$ $h = -1$ $K = -6$

(ii) D:
$$\{x \mid x > -1, x \in R\}$$
 $y = -3\log_3(x+1) - 6$
R: $\{y \mid y \in R\}$ $0 = -3\log_3(x+1) - 6$

(iii)
$$y int (x=0)$$

 $y = -3log(x+1)-6$

$$y = -3\log_{2}(0+1) - 6$$

(iv)
$$x$$
-int $(y=0)$

$$y = -3\log_3(x+1) - 6$$

$$0 = -3\log_{3}(x+1) - 6$$

$$6=-3\log_{2}(x+1)$$

$$\frac{1}{4} = x + 1$$

Questions from Homework

- 11. Explain how the graph of) $\frac{1}{3}(y+2) = \log_6(x-4)$ can be generated by transforming the graph of $y = \log_6 x$. $y+\partial=3\log_6(x-4)$ Divide $\frac{a+K}{3}$ by $\frac{1}{3}$ $y=3\log_6(x-4)-\partial$ Subtract ∂ from both sides y=3log(x-4)-2 $a=3 \Rightarrow A$ vertical stretch by a factor of 3 b=1 \Rightarrow No horizontal stretch. $h=4 \rightarrow Translated 4 units right.$ $K=-3 \rightarrow " 3 " 30 nm.$
- 5. Identify the following characteristics of the graph of each function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - iii) the y-intercept, to one decimal place if necessary
 - iv) the x-intercept, to one decimal place if necessarv

a)
$$y = -5 \log_3 (x + 3)$$

b)
$$y = \log_6 (4(x + 9))$$

c)
$$y = \log_5 (x + 3) - 2$$

d)
$$y = -3 \log_2 (x + 1) - 6$$

d)
$$y = -3 \log_2 (x + 1) - 6$$

b)
$$q=1$$
 $b=4$ $h=-9$ $K=0$
 $(x,y) \longrightarrow \left[\frac{1}{4}x-9, y+0\right]$

d)
$$y = -3 \log_2 (x + 1) - 6$$

Bosse: $y = \log_6 X$ For: $y = \log_6 (4(x + 9))$
D: $\{x \mid x > 0, x \in R\}$ (i) VA : $x = -9$

(iv) x-intercept (Let
$$y=0$$
)
 $y = \log_{6}(4(x+9))$
 $0 = \log_{6}(4x+36) = -ans$

$$6^{\circ} = 4x + 36$$

$$-35 = 4x$$

 $-\frac{35}{4} = x$ or $(-\frac{35}{4}, 0)$ or $(8.75, 0)$

General Properties of Logarithms:

If c > 0 and $c \ne 1$, then...

- (i) $\log_{\mathbf{C}} 1 = 0$ (ii) $\log_{\mathbf{C}} c^{x} = x$ (iii) $c^{\log_{\mathbf{C}} x} = x$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(i)
$$\log_5 l = 0$$
 (ii) $\log_5 3^3 = 3$ (iii) $\gamma^{\log_5 49} = 49$

$$5^{\log_5 10} = 10$$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$MN = (c^x)(c^y)$$
 $MN = c^{x+y}$ Apply the product law of powers. $\log_c MN = x + y$ Write in logarithmic form. $\log_c MN = \log_c M + \log_c N$ Substitute for x and y .

$$0 \log_3 xyz = \log_3 x + \log_3 y + \log_3 z$$

(a)
$$\log_3 6 + \log_3 5 = \log_3 (6x5) = \log_3 30 \approx 4.967$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$
 Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$
 Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$
 Substitute for x and y.

$$\log_3 \frac{xy}{z} = \log_3 xy - \log_3 z = \log_3 x + \log_3 y - \log_3 z$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$.

Let P be a real number.

$$M=c^x$$
 $M^p=(c^x)^p$ $M^p=c^{xp}$ Simplify the exponents. $\log_c M^p=xP$ Write in logarithmic form. $\log_c M^p=(\log_c M)P$ Substitute for x . $\log_c M^p=P\log_c M$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

$$0 = \frac{109.8}{109.8}$$

$$= \frac{109.8}{109.8}$$

$$= \frac{109.8}{109.8}$$

$$= \frac{109.8}{109.8}$$

$$= \frac{109.8}{109.8}$$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponen times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Homework

Finish Exercise 2

Example 1

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

- a) $\log_5 \frac{XY}{Z}$
- **b)** $\log_7 \sqrt[3]{X}$
- c) $\log_{6} \frac{1}{X^{2}}$
- **d)** $\log \frac{X^3}{y\sqrt{Z}}$

Example 2

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression.

- a) $\log_6 8 + \log_6 9 \log_6 2$
- **b)** $\log_7 7\sqrt{7}$
- c) $2 \log_2 12 (\log_2 6 + \frac{1}{3} \log_2 27)$

Example 3

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x - 2) - \log_5 (x^2 + 2x - 3)$$

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_{c} MN = \log_{c} M + \log_{c} N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_{c} \frac{M}{N} = \log_{c} M - \log_{c} N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

Many quantities in science are measured using a logarithmic scale. Two
commonly used logarithmic scales are the decibel scale and the pH scale.

Homework

Do I really understand??...

- a) Express the following as a single logarithm... $2 \log_2 3^2 + \log_2 6 3 \log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 (\log_b x^2 - 2\log_b x) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$