

Formation Reactions:

This reactions starts with elements only as reactants. The reactants will form compounds as products.

elements ⇒compound

Ex.
$$C_{(s)} + 2H_{2(g)} -> CH_{4(g)}$$

The molar enthalpy symbol for a formation reaction is $\mathbf{H}_{\mathbf{f}}$

Simple Decomposition Reactions:

This reaction starts as a compound, which decomposes into its elements.

(opposite of a formation reaction)

compound ⇒elements

Ex.
$$CH_{4(g)} --> C_{(s)} + 2H_{2(g)}$$

The molar enthalpy symbol is H_{SD} .

Combustion Reactions:

The reaction of a substance with excess oxygen to produce an oxide.

Ex.
$$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$$
 $\Delta H_C =$

The molar enthalpy symbol is $\mathbf{H}_{\mathbf{c}}$.

(b) Molar Enthalpies

 $\mathbf{H}_{\mathbf{f}}$ - molar enthalpies of formation is the quantity of heat released or absorbed when one mole of a substance forms from its elements.

 $\mathbf{H_c}$ - molar enthalpies of combustion is the quantity of heat released or absorbed when one mole of a substance reacts with oxygen.

Ho - standard molar enthalpy is the quantity of heat released or absorbed when one mole of a substance reacts at SATP

(c) △H - Enthalpy change is the quantity of heat released or absorbed when a reaction occurs. This may also be called PHEAT OF Reaction" or "Change in Heat".

⇒ must know the number of moles of a substance reacting to determine the enthalpy change

(d) Molar enthalpy may be determined from the enthalpy change as long as the number of moles (n) are known.

$$\Delta H_r = nH_r$$

Ex. $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$
 $H^o = -98.79 \text{kJ/mol}$

How do we find the change in enthalpy of $SO_{2(g)}$??

Atr=nthr
Atr=(2 mol)(-98.79
$$\frac{k5}{mol}$$
)
Atr=-197.58 kJ

$$H_r = \Delta H_r / n$$

COMMUNICATING ENTHALPY CHANGES

Using ∆H_r notation:

- for chemical reactions not well known, the chemical equation must accompany the enthalpy change. The molar enthalpy of reaction (or change in enthalpy) follows the equation. For exothermic reactions the $\Delta H_r < 0$.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} = MgO_{(s)} \Delta H_r = -601.6kJ$$

The Enthalpy Change (ΔH_r) may be included as a term in the balanced equation:

(i) In endothermic reactions - energy is reported as a reactant and is transformed in the reaction.

Ex.
$$H_2O_{(1)} + 285.8kJ \Rightarrow H_{2(g)} + 1/2O_{2(g)}$$

(ii) In exothermic reactions - energy is reported as a product since it is being produced.

Ex.
$$Mg_{(s)} + 1/2 O_{2(g)} \Rightarrow MgO_{(s)} + 601.6kJ$$

POTENTIAL ENERGY DIAGRAMS

- may be used to express enthalpy change (ΔH_r)
- shows the potential energy of the reactants and products of a chemical reaction.
- shows the difference between the initial and final energies as the enthalpy change. (ΔH_r)

$Endothermic \ Rxn$ $Exothermic \ Rxn$ reactants E_p $\Delta H_r > 0$ reactants P_p $\Delta H_r < 0$ P_r P_r P_r P_r P_r P_r P_r P_r P_r P_r

see Fig 11-8 p 373 (also 11-15,16,17)

For each of the following reactions:

- (a) rewrite the equation including the enthalpy change as a term
- (b) draw a potential energy diagram

(i)
$$C_6H_{12}O_{6(s)} + 6O_{2(g)} - 6CO_{2(g)} + 6H_2O_{(l)}$$
 $\Delta H^0 = -2802.7kJ$

(ii)
$$H_2O_{(l)} \longrightarrow H_{2(g)} + \underbrace{1}_{2}O_{2(g)}$$
 $\Delta H^0 = 285.8 \text{ kJ}$