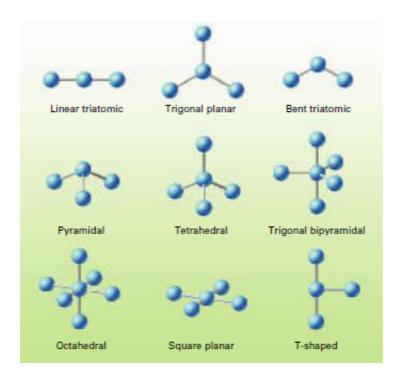
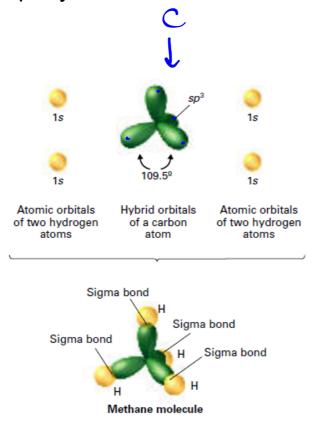

Worksheet 8.2


VSEPR

Ex. CO₂

Ex. CH₂O

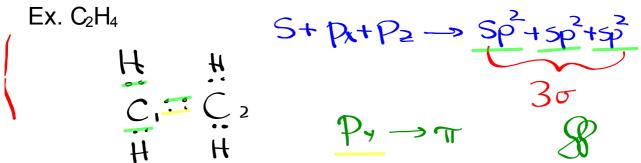


Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

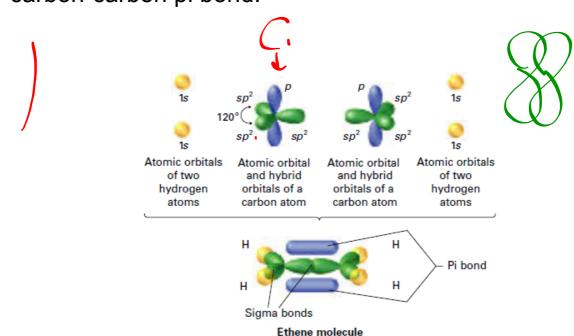


H: C: H

H: C: H

$$15\frac{1}{1}$$
 $15\frac{1}{1}$
 $15\frac{1}$
 $15\frac{1}{1}$
 $15\frac{1}$
 $15\frac{1}{1}$
 $15\frac{1}$
 $15\frac{1}{1}$
 $15\frac{1}{1}$
 $15\frac{1}{1}$
 $15\frac{1}{1}$
 $15\frac{1}{1}$
 $15\frac{1}{$

Hybridization Involving Double Bonds



The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

