Worksheet 8.2

B(2

Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH₄

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

Hybridization Involving Double Bonds

Ex. C_2H_4

The one 2s orbital and two2p orbitals of each carbon atom mix to form threesp² hybrid orbitals.

Two of the *sp*² orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding2p orbitals overlap side-by-side to form a carbon-carbon pi bond.

C₁
$$\longrightarrow$$
 bonds to 3 atoms

H

S+Px+P₂ \longrightarrow Sp² + Sp² + Sp² + Sp

C₁:: C₂

H

30 bonds

P₁ \longrightarrow T bond

(lefforer)

Hybridization Involving Triple Bonds

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with thes*p* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding 2p orbitals overlap side-by-side to form two carbon-carbon pi bonds.

Homework

p. 236 #23-29