p. 223 #1-7

Counting Atoms

CaSO₄

 $Mg(NO_3)_2$

2NaCl

 $3AI(HCO_3)_3$

Counting Atoms Sheet

Law of Conservation of Mass

In a chemical reaction, the total mass of the reactants is always equal to the total mass of the products.

Balancing Chemical Equations

Skeleton Chemical Equation

Represents the chemical reaction, connecting the reactants to the products.

Ex. methane + oxygen
$$\Rightarrow$$
 carbon dioxide + water

$$_CH_4 + 2O_2 \Rightarrow _CO_2 + 2H_2O$$

Count the Atoms!

ATOM	REACTANTS	PRODUCTS
C		
H	4	2
0	2	3

Tips for balancing chemical equations:

- You can only add coefficients (number in front of formula)
- Balance each atom individually, unless it appears to be a polyatomic compound
- Choose the 'easy' atoms first

$$2Mg_{(s)} + O_{2(g)} \longrightarrow 2MgO_{(s)}$$

Balance the following chemical equations:

$$Mg_{(s)} + O_{2(g)} \longrightarrow MgO_{(s)}$$

$$3H_2 + N_2 \longrightarrow 2NH_3$$

$$2A1 + 3CuO \rightarrow Al_2O_3 + 3Cu$$

$$CaCl_2 + 2AgNO_3 - 2AgCl + Ca(NO_3)_2$$

Homework P. 229 #1-3d

c)
$$G + H_2O \rightarrow G(OH)_2 + H_2$$