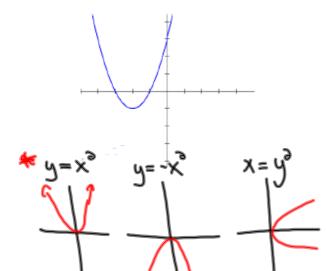

Catalog of Essential Functions

1. Linear

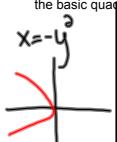


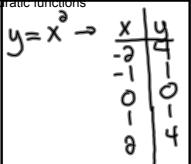
Straight Line

Equation will be degree one

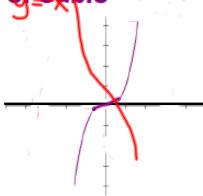
Should be able to identify the *slope*, *intercepts*, *and equation* from the graph

2. Quadratic

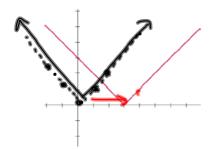



Parabola (U-Shaped)

Either y or x will be squared (not both!)


Should know the 4 basic quadratic functions

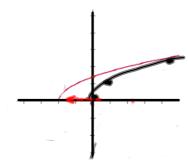
Should be able to apply transformations to the basic quadratic functions


3/_Ckipic

S-Shaped

Catalog of Essential Functions

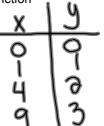
4. Absolute Value


V-Shaped

Equation will have a variable within the absolute value bars

Should be able to apply transformations to the basic absolute value function

5. Square Root

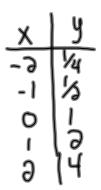


Half Parabola

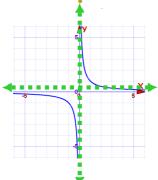

Equation will have a variable under the square root sign

Should be able to apply transformations to the basic square root function

$$y = \sqrt{x}$$


6. Exponential

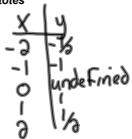
Steadily increasing or decreasing


Base will be a number and variable will appear in the exponent

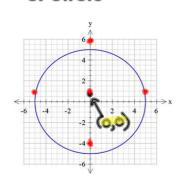
Should be able to identify the *horizontal asymptote*

Catalog of Essential Functions

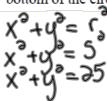
7. Reciprocal

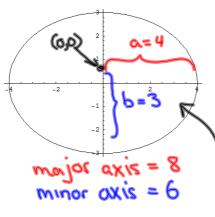


Will have two branches

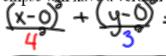

Equation will have a variable within the denominator of a rational expression

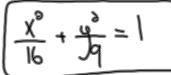
Should be able to identify the *vertical and horizontal asymptotes*


$$y = \frac{1}{x}$$


8. Circle

- General form: $(x-h)^2 + (y-k)^2 = r^2$
 - center: (h, k) (0,0) fradius = r
- Be able to identify the function that would describe either just the top or bottom of the circle.


9. Ellipse



• General form: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$

Where...

- Center: (h, k)
- a > b
- If a is the denominator of the "y" term the ellipse will have a vertical major axis.

Transformations:

New Functions From Old Functions

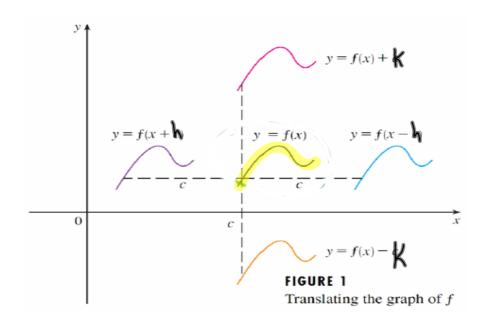
- 1 Translations (Slide transformations)
 - **Stretches**
 - **8** Reflections

Translations

Focus on ... K = vertical translation (Shift Left or right)

- determining the effects of h and k in y k = f(x h)on the graph of y = f(x) or y = f(x - h) + K
- sketching the graph of y k = f(x h) for given values of h and k, given the graph of y = f(x)
- writing the equation of a function whose graph is a vertical and/or horizontal translation of the graph of

Sunction notation.


$$b = -1$$
 down 1

Translation

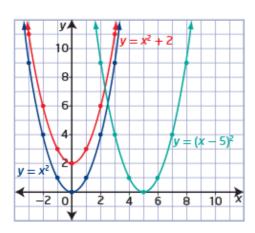
- To translate or shift a graph is to move it up, down, left, or right without changing its shape.
- Translation is summarized by the following table and illustration:

```
Vertical and Horizontal Shifts Suppose c>0. To obtain the graph of y=f(x)+1 shift the graph of y=f(x) a distance x units upward y=f(x)-1 shift the graph of y=f(x) a distance x units downward y=f(x)-1, shift the graph of y=f(x) a distance x units to the right y=f(x), shift the graph of y=f(x) a distance x units to the left
```

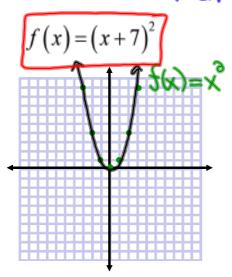
Translations illustrated...

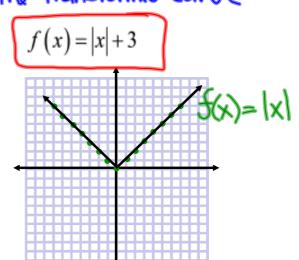
Using Mapping Notation to Describe Transformations:

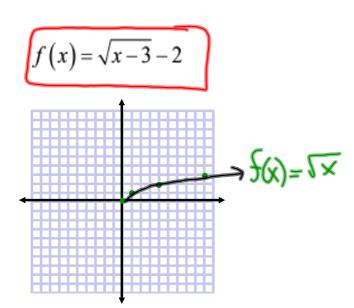
*Think of this as a set of instructions to follow to transform a graph. $k = 3 \rightarrow 40$

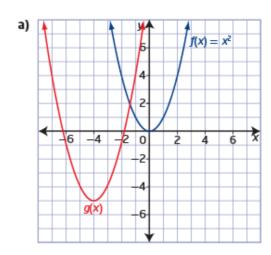

base. y=x ³					
$y = x^2$					
9					
4					
1					
0					
1					
4					
9					

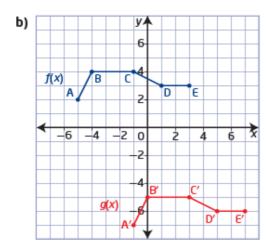
K=3 -> up 0					
X	$y=x^2+2$				
-3	11				
-2	6				
-1	3				
0	2				
1	3				
2	6				
3	11				


		D
	3	11
(x	,y)→((x,y+k)


h=5	$\Rightarrow (ight = 5)^2$	
Х	$y=(x-5)^2$	
2	9	
3	4	
4	1	
5	0	
6	1	
7	4	
8	9	
(x,y)-	->(x+h,y	


Graph Translations of the Form y - k = f(x) and y = f(x - h)


Identify the translations for each of the following...
and then sketch the transformed curve



Determine the Equation of a Translated Function:

- Translations are transformations that shift all points on the graph of a function up, down, left, and right without changing the shape or orientation of the graph.
- The table summarizes translations of the function y = f(x).

Function	Transformation from $y = f(x)$	Mapping	E <i>x</i> ample
y - k = f(x) or $y = f(x) + k$	A vertical translation If $k > 0$, the translation is up. If $k < 0$, the translation is down.	$(x,y) \rightarrow (x,y+k)$	y - k = f(x), k > 0 $y - k = f(x), k < 0$
y = f(x - h)	A horizontal translation If $h > 0$, the translation is to the right. If $h < 0$, the translation is to the left.	$(x, y) \rightarrow (x + h, y)$	y = f(x - h), h > 0 $y = f(x)$ 0 $y = f(x - h), h < 0$

• A sketch of the graph of y - k = f(x - h), or y = f(x - h) + k, can be created by translating key points on the graph of the base function y = f(x).

Homework

Page 12 #1, 2, 4, 8