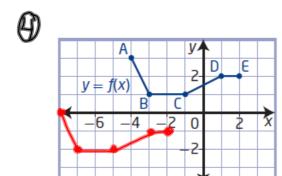

Warm-Up

8. Copy and complete the table.

Translation	Transformed Function	Transformation of Points		
vertical	y = f(x) + 5	$(x, y) \rightarrow (x, y + 5)$		
H	y = f(x + 7)	$(x, y) \rightarrow (x-7, y)$	h=-7	
\mathcal{H}	y = f(x - 3)	$(\nu, \mathcal{E}+\chi) \leftarrow (\nu, \chi)$	h =3	
V	y = f(x) - 6	$(x,y) \rightarrow (x,y-6)$) K=-6	
horizontal and vertical	y+9=f(x+4)	$(x,y) \rightarrow (x-4,y-6)$) h=-4	K=-9
horizontal and vertical	y=5(x-4)-6	$(x, y) \rightarrow (x + 4, y - 6)$	h=4	K=-6
N+V	6+(6+x)t=n	$(x, y) \rightarrow (x - 2, y + 3)$	h= -0	h=3
horizontal and vertical	y = f(x - h) + k		+K)	

Questions from Homework

(a)
$$h(x) = f(x-2) h = 0$$


(b) $h(x) = f(x-2) h = 0$

(c) $(x-2) = (x-2) h = 0$

(d) $h(x) = f(x-2) h = 0$

(e) $h(x) = f(x-2) h = 0$

(f) $h(x) = f(x-2) h$

00 S(x) = f(x+4) - 3 $(x,y) \longrightarrow (x-4,y-3)$ $A(+3) \qquad A'(-8,0)$ $B(-3,1) \qquad B'(-7,-3)$ $C(-1,1) \qquad C'(-5,-3)$ $D(1,3) \qquad E'(-3,-1)$ $E(-3,3) \qquad E'(-3,-1)$

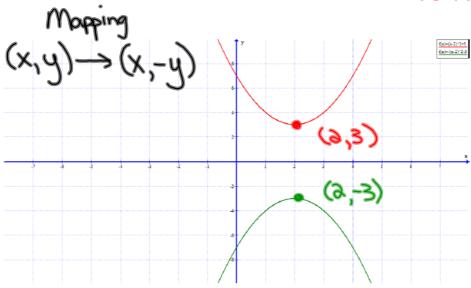
Transformations:

New Functions From Old Functions

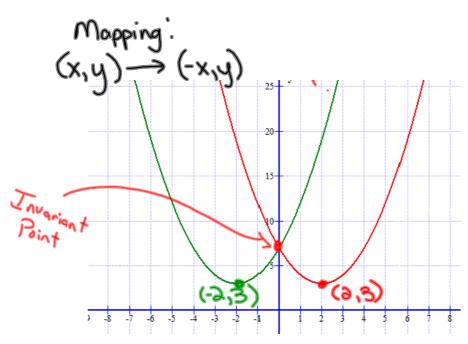
Translations

Stretches

Reflections


Reflections and Stretches

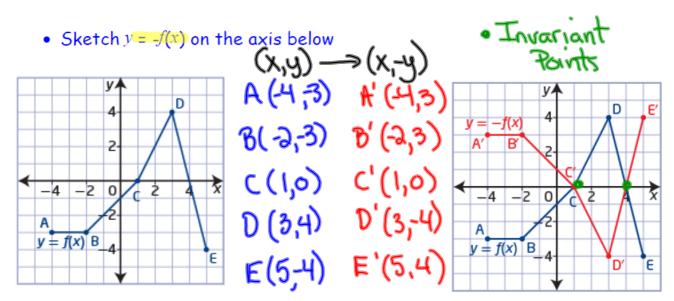
Focus on...


- developing an understanding of the effects of reflections on the graphs of functions and their related equations
 - developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

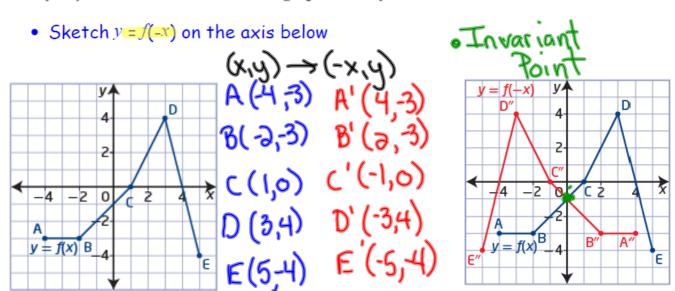
• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the x-axis. (vertical reflection)

• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis. (horizontal)



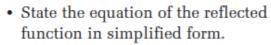
invariant point

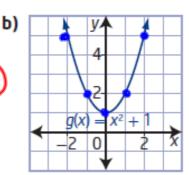
- a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

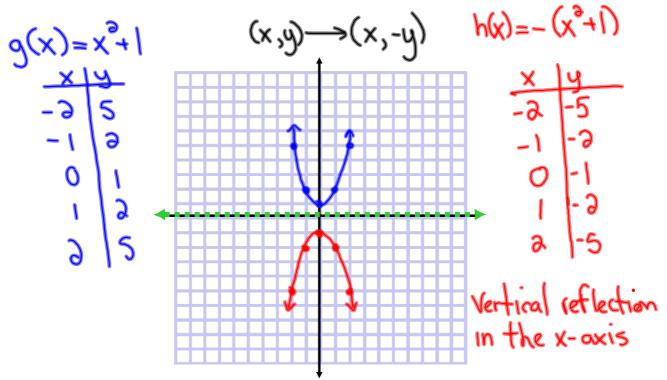

Remember...

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the *x*-axis.

Remember...


• When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the y-axis.


Questions from Homework


Page 28 #1, 3, and 4

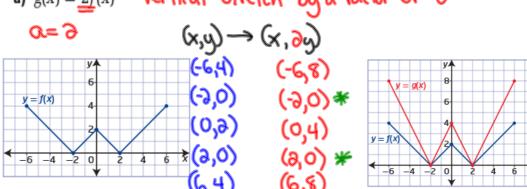
- 3. Consider each graph of a function.
 - Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes. (Vertical Reflection)

$$h(x) = -(x^2+1) = -x^2-1$$

Domain: $\{X \mid X \in R\}$
Range: $\{y \mid y \leq -1, y \in R\}$

Vertical and Horizontal Stretches

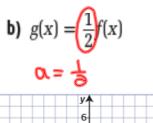
A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

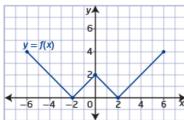

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

stretch

 a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor • scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical Stretch or Compression...

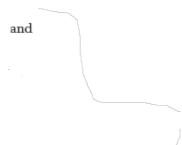

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- a) $g(x) = \underline{2f}(x)$ Vertical stretch by a factor of ∂



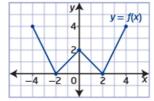
The invariant points are (-2, 0) and (2, 0).

For f(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 4, y \in R\}$, or [0, 4].

For g(x), the domain is $\{x \mid -6 \le x \le 6, x \in R\}$, or [-6, 6], and the range is $\{y \mid 0 \le y \le 8, y \in R\}$, or [0, 8].



The invariant points are For f(x), the domain is


and the range is

For g(x), the domain is and the range is

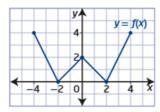
Horizontal Stretch or Compression...

- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.
- a) g(x) = f(2x)

The invariant point is

For f(x), the domain is

or and the range is

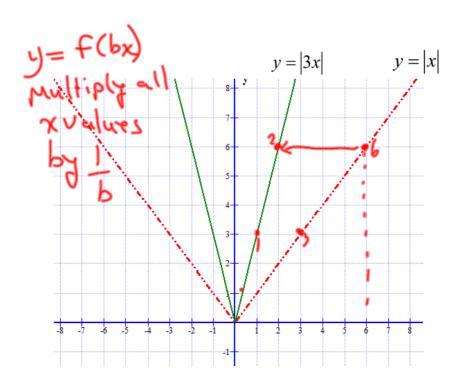

or

For g(x), the domain is

or and the range is

or

b)
$$g(x) = f(\frac{1}{2}x)$$



The invariant point is

For f(x), the domain is and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

Page 28 # 2, 5, 6, 7