Warm Up

Draw the following compounds:

a) diethylpentane

b) 4-ethyl-2-methylhexane

c) trimethylbutane

Worksheets - Naming Alkanes

Naming Alkenes / Alkynes

Naming alkenes (double bonds) and alkynes (triple bonds) are very similar to alkanes. When naming, take these two points into consideration:

- the longest parent chain of carbon atoms must include the multiple bond, and the chain is numbered from the end closest to the multiple bond
- the name of the compound's parent chain is preceded by a number that indicates the position of the multiple bond on the parent chain.

Ex.
$$CH_2 = \frac{^2}{CH} - \frac{^3}{CH_2} - \frac{^3}{CH_3}$$

$$CH_3 - C \equiv C - CH_3$$

$$CH_3 \qquad \text{4-methyl-2-pentene}$$

$$CH_3 - CH = CH - CH - CH _3$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

3
CH₂CH₂CH₂CH₃ 2 methy|-|-hexene
CH₃ - CH = CH₂

Multiple Multiple Bonds

If there is more than one multiple bond in an organic compound, the name of the compound is changed to a _____ diene, with the placing of the double bonds indicated at the beginning of the parent name.

H
H

dimethyl-1,3-butadiene

$$CH_3$$
 $CH_2 = C - C = CH_2$
 CH_3
 CH_3

Homework

Worksheet 46

Trend of boiling points of hydrocarbons

- the boiling point of hydrocarbons vary as their structure varies. (isomers)
- the boiling point and melting points of hydrocarbons increase with the number of carbons.

 (see attached)

http://www.elmhurst.edu/~chm/vchembook/501hcboilingpts.html

In general most unsubstituted hydrocarbons are non-polar and are therefore soluble in other non-polar solvents (are not soluble in polar solvents)

Table 1 <i>Hydrocarbo</i> Hydrocarbon	n Beiling Feints Formula	Boiling Point (*C)
Butane	$C_4 H_{10}$	-0.5
Decane	$C_{10}H_{22}$	174.0
Ethane	$C_2^{1}H_6^{1}$	-88.6
Heptane	$C_{7}^{-}H_{16}^{-}$	98.4
Hexane	$C_{6}H_{14}$	68.7
Methane	CH_4	-161.7
Nomane	$C_9 \overline{\mathrm{H}}_{20}$	150.8
Octane	$C_{8}^{'}H_{18}^{2}$	125.7
Pentane	$C_{5}^{"}H_{12}^{"}$	36.1
Propane	$c_3^{\rm H_8}$	-42.1

Electron Dot Formulas

- (i) ethane (ii) ethene (iii) ethyne Η Н Η Η С С С С Η С Η Η С Η Η **Tetrahedral** Linear Planar sp² sp³ sp
- show the **sharing** of electrons between atoms
- two shared electrons = one bond

