Warm-Up | Name | Symbol | Protons | Electrons | Ionic
Charge | |----------------|-------------------|---------|-----------|-----------------| | iron | Fe 2+ | 26 | 24 | 2+ | | Chromium 1000 | Cr3+ | 24 | 21 | 3+ | | silver
atom | Ag | 47 | 47 | 0 | | Selenide | Se ² - | 34 | 36 | 2- | ## Homework - Ions Worksheet ## **Quantum Mechanical Model of an Atom** The quantum mechanical model determines the allowed energies an electron can have and how likely it is to find the electron in various locations around the nucleus. atomic orbital - region of space in which there is a high probability to find an electron Principal quantum numbers (\mathbf{n}) represent energy levels of electrons (i.e., n = 1, 2, 3, 4, etc.) There may be several orbitals with different shapes at different energy levels. | | | | n | لم ² | |---------------------------|------------------------|--|----------------------------|------------------------------| | Principal Energy
Level | Number of
Sublevels | Type of Sublevel | Number of
Orbitals (n2) | Number of
Electrons (2n2) | | n = 1 | 1 | 1s (1 orbital) | 1 | 2 | | n = 2 | 2 | 2s (1 orbital), 2p
(3 orbitals) | 4 | 8 | | n = 3 | 3 | 3s (1 orbital), 3p
(3 orbitals), 3d (5
orbitals) | 9 | 18 | | n = 4 | 4 | 4s (1 orbital), 4p
(3 orbitals), 4d
(5 orbitals), 4f
(7 orbitals) | | |