Warm-Up

Name	Symbol	Protons	Electrons	Ionic Charge
iron	Fe 2+	26	24	2+
Chromium 1000	Cr3+	24	21	3+
silver atom	Ag	47	47	0
Selenide	Se ² -	34	36	2-

Homework - Ions Worksheet

Quantum Mechanical Model of an Atom

The quantum mechanical model determines the allowed energies an electron can have and how likely it is to find the electron in various locations around the nucleus.

atomic orbital - region of space in which there is a high probability to find an electron

Principal quantum numbers (\mathbf{n}) represent energy levels of electrons (i.e., n = 1, 2, 3, 4, etc.)

There may be several orbitals with different shapes at different energy levels.

			n	لم ²
Principal Energy Level	Number of Sublevels	Type of Sublevel	Number of Orbitals (n2)	Number of Electrons (2n2)
n = 1	1	1s (1 orbital)	1	2
n = 2	2	2s (1 orbital), 2p (3 orbitals)	4	8
n = 3	3	3s (1 orbital), 3p (3 orbitals), 3d (5 orbitals)	9	18
n = 4	4	4s (1 orbital), 4p (3 orbitals), 4d (5 orbitals), 4f (7 orbitals)		