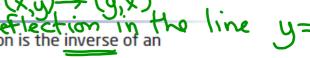
Understanding Logarithms

Chapter 8 (page 370)

Focus on...



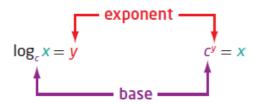
- demonstrating that a logarithmic function is the inverse of exponential function
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

• sketching the graph of $y = \log_c x$, c > 0, $c \neq 1$

For the exponential function $y = c^x$, the inverse is $x = c^y$. This inverse is also a function and is called a **logarithmic function**. It is written as $y = \log_c x$, where c is a positive number other than 1. (Rage 373)

Logarithmic Form

Exponential Form



Since our number system is based on powers of 10, **logarithms** with base 10 are widely used and are called **common logarithms**. When you write a common logarithm, you do not need to write the base. For example, $\log 3$ means $\log_{10} 3$.

logarithmic function

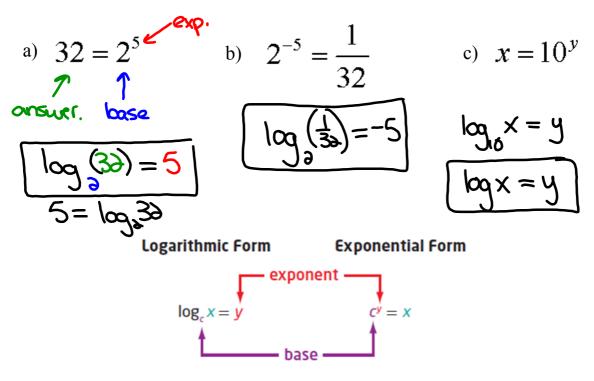
a function of the form y = log_c x, where c > 0 and c ≠ 1, that is the inverse of the exponential function y = c^x

logarithm

- an exponent
- in x = c^y, y is called the logarithm to base c of x

common logarithm

 a logarithm with base 10 Write each of the following in logarithmic form



Write each of the following in exponential form

a)
$$\log_4 16 = 2$$
 exp b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log 65 = 1.8129$ b) $\log_2 \left(\frac{1}{32}\right) = -5$ c) $\log_2 \left(\frac{1}{32}\right) = -5$ d) $\log_2 \left(\frac{1}{32}\right) = -5$ d

Evaluating a Logarithm

(Solving for an exponent)

- a) log, 49
- **b)** log_e 1
- c) log 0.001

by Let x = log 1

 $X = \log 1$

d) $\log_2 \sqrt{8}$

co Let
$$x = \log_7 49$$
 $x = \log_7 49$
 $y = \log_7$

$$7^{x} = 7^{3}$$
 = get common \longrightarrow $6^{x} = 6^{0}$
 $x = 3$
 $x = 7$
 $x = 7$

0.001 = X = 100.001

$$10^{x} = 0.001$$
 $10^{x} = 10^{-3}$
 $10^{x} = 10^{-3}$
 $10^{x} = -3$
 $10^{x} = -3$
 $10^{x} = -3$

$$3x = \sqrt{8}$$

$$3x = \sqrt{8}$$

$$3x = \sqrt{3}$$

$$3x =$$

Determine an Unknown in an Expression in Logarithmic Form

Determine the value of x.

a)
$$\log_5 x = -3$$

b)
$$\log_x 36 = 2$$

c)
$$\log_{64} x = \frac{2}{3}$$

$$5^{-3} = X$$

$$\left(\frac{1}{5}\right)^3 = X$$

$$\boxed{\frac{192}{1} = x}$$

$$X = -6$$

Choose $X = 6$

$$c) \log_{44} x = \frac{3}{3}$$

$$(64)^{3} = \times$$

5

Graph the Inverse of an Exponential Function

- a) State the inverse of $f(x) = 3^x$.
- **b)** Sketch the graph of the inverse. Identify the following characteristics of the inverse graph:
 - the domain and range
 - the x-intercept, if it exists
 - the y-intercept, if it exists
 - the equations of any asymptotes

To Find Inverse

$$a) f(x) = 3^{x}$$

$$x=39$$
 (Switch $x+y$)

$$y = \log_3 x$$
 (Solve for y) \rightarrow Express in logarithmic form

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

$$f(x)=3^{x} \longrightarrow f'(x)=\log_{3}x$$

- D: {x | x ∈ R}
- -R: {yly>0,yER} -R:{ylyER}
- x-int: none
- x-int: (1,0)
- 4-int: (0,1)
- y-int: none

• HA: 4=0

• VA: X=0

Solution

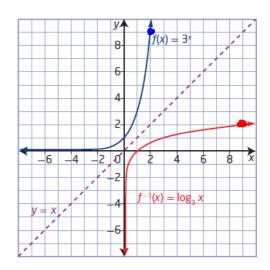
a) The inverse of $y = f(x) = 3^x$ is $x = 3^y$ or, expressed in logarithmic form, $y = \log_3 x$. Since the inverse is a function, it can be written in function notation as $f^{-1}(x) = \log_3 x$.

How do you know that $y = \log_3 x$ is a function? u = 0

b) Set up tables of values for both the exponential function, f(x), and its inverse, $f^{-1}(x)$. Plot the points and join them with a smooth curve.

$f(x) = 3^x$					
X	У				
-3	<u>1</u> 27				
-2	<u>1</u>				
-1	<u>1</u> 3				
0	1				
1	3				
2	9				
3	27				

$f^{-1}(x) = \log_3 x$					
X	У				
<u>1</u> 27	-3				
<u>1</u>	-2				
<u>1</u> 3	-1				
1	0				
3					
• 9	2				
27	3				



The graph of the inverse, $\underline{f^{-1}(x) = \log_3 x}$, is a reflection of the graph of $f(x) = 3^x$ about the line y = x. For $f^{-1}(x) = \log_3 x$,

- the domain is $\{x \mid x > 0, x \in R\}$ and the range is $\{y \mid y \in R\}$
- the x-intercept is 1 (1,0)
- there is no y-intercept
- the vertical asymptote, the *y*-axis, has equation x = 0; there is no horizontal asymptote

How do the characteristics of $f^{-1}(x) = \log_3 x$ compare to the characteristics of $f(x) = 3^x$?

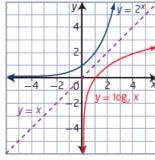
Key Ideas

- A logarithm is an exponent.
- Equations in exponential form can be written in logarithmic form and vice versa.

Exponential Form Logarithmic Form $x = c^y$ $y = \log_c x$

- The inverse of the exponential function $y=c^x$, c>0, $c\neq 1$, is $x=c^y$ or, in logarithmic form, $y=\log_c x$. Conversely, the inverse of the logarithmic function $y=\log_c x$, c>0, $c\neq 1$, is $x=\log_c y$ or, in exponential form, $y=c^x$.
- The graphs of an exponential function and its inverse logarithmic function are reflections of each other in the line y = x, as shown.
- For the logarithmic function $y = \log_c x$, c > 0, $c \neq 1$,
 - the domain is $\{x \mid x > 0, x \in R\}$
 - the range is $\{y \mid y \in R\}$
 - the x-intercept is 1
 - the vertical asymptote is x = 0, or the y-axis
- A common logarithm has base 10. It is not necessary to write the base for common logarithms:

$$\log_{10} x = \log x$$



Questions from Homework

- 8. a) If $f(x) = 5^x$, state the equation of the a) Inverse: $f(x) = 5^x$ inverse, $f^{-1}(x)$.

 - **b)** Sketch the graph of f(x) and its inverse. Identify the following characteristics of the inverse graph:

· the domain and range

For the curve

R: {yly>0,yER}

x-int: none

y-int: (0,1)

HA: y=0

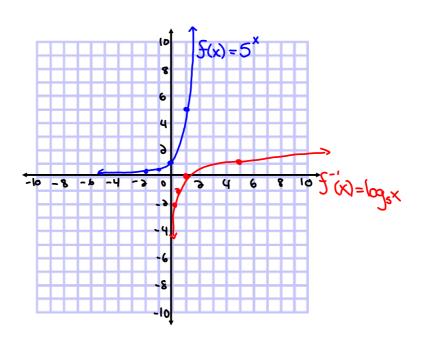
• the x-intercept, if it exists

- the y-intercept, if it exists
- the equations of any asymptotes
- 5-1(x)=1005x b) D'. [x1xxx, xen] $\Im(x) = 5^{x}$ D: {x|xex}

For the curve

- R: {ylyeh}

- $f(x)=5^{x}$
- 5-(x) = log_x



(a) b)
$$\log_{x} 9 = \frac{1}{3} \times \exp 0$$
 $\log_{x} 10 = \frac{4}{3} \times \exp 0$
 $\log_{x} 10 = \frac{4} \times \exp 0$
 $\log_{x} 10 = \frac{4}{3} \times \exp 0$
 $\log_{x} 10 = \frac{4}{3} \times \exp 0$

- 17. The growth of a new social networking site can be modelled by the exponential function N(t) = 1.1^t, where N is the number of users after t days.
 - a) Write the equation of the inverse.
 - b) How long will it take, to the nearest day, for the number of users to exceed 1 000 000?

$$\omega N = 1.1^{t}$$

$$t = 1.1^{N}$$

$$\log_{1.1} t = N$$

$$N = \log_{1.1} t$$

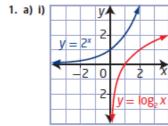
b)
$$N = 1.1^{t}$$

1000 000 = 1.1^t

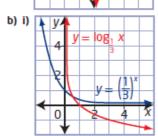
(141.95

(145 days = t

8.1 Understanding Logarithms, pages 380 to 382

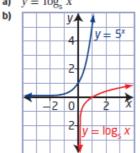


ii) $y = \log_2 x$ iii) domain $\{x \mid x > 0, x \in R\},\$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0



- ii) $y = \log_1 x$
- iii) domain $\{x\mid x>0,\,x\in R\},$ range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote
- 2. a) $\log_{12} 144 = 2$
 - c) $\log_{10} 0.000 \ 01 = -5$
- 3. a) $5^2 = 25$
 - c) $10^6 = 1000000$
- **4. a)** 3
- **b)** 0
- **5.** a = 4; b = 5
- **b)** $\log_8 2 = \frac{1}{3}$
- $\log_{7}(y+3)=2x$
- $8^{\frac{2}{3}} = 4$
- d) $11^y = x + 3$
- d) -3

8. a) $y = \log_5 x$



domain $\{x \mid x > 0, x \in R\}$, range $\{y \mid y \in R\}$, x-intercept 1, no y-intercept, vertical asymptote x = 0

d) 8

- **10.** They are reflections of each other in the line y = x.
- 11. a) They have the exact same shape.
 - One of them is increasing and the other is decreasing.
- 12. a) 216
- **b)** 81
- 13. a) 7
- **b)** 6 b)
- 14. a) 0 15. -1
- **16.** 16
- **17.** a) $t = \log_{1.1} N$
- b) 145 days

c) 64

- 18. The larger asteroid had a relative risk that was 1479 times as dangerous.
- 19. 1000 times as great
- **20.** 5
- **21.** m = 14, n = 13
- **22.** 4n
- **23.** $y = 3^{2^x}$

Transformations of Logarithmic Functions $y = \alpha \log_{c} (b(x-h)) + K$ Focus on...

Focus on...

- explaining the effects of the parameters a, b, h, and k in $y = a \log_c (b(x h)) + k$ on the graph of $y = \log_c x$, where c > 1
- · sketching the graph of a logarithmic function by applying a set of transformations to the graph of $y = \log_c x$, where c > 1, and stating the characteristics of the graph

Remember:

Parameter	Transformation		
а	$(x, y) \rightarrow (x, ay)$		
b	$(x, y) \rightarrow \left(\frac{x}{b}, y\right)$		
h	$(x, y) \rightarrow (x + h, y)$		
k	$(x, y) \rightarrow (x, y + k)$		

Translations of a Logarithmic Function

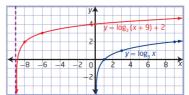
a) Use transformations to sketch the graph of the function

$$y = \log_3 (x + 9) + 2$$
. Q= | b= | h=-9 K= ∂

- b) Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
- ii) the domain and range
- iii) the y-intercept, if it exists
- iv) the x-intercept, if it exists

y= 3		y =	log _s ×	(x,y)=>[x-9, y+2]	y= log	6+(P+x) ₄
X	<u>y</u>	_X	4	, , , , , ,		
9 - 1 9	4	1/9 1/3 1 3 9	- 9	xint ->		0
- 1	/3	13	-1		- 36/4	b
0	1	1	0		- K	3
١	13	3			- 0	2
9	19	9	9	. 1	- 6	13
				gint _	→ Ò	14

(i)
$$VA$$
: $X = -9$



(iii) y int
$$(x=0)$$
 $y = \log_3(x+9) + 3$
 $y = \log_3(0+9) + 3$
 $y = \log_3(0+3) + 3$
 $y = 0 + 3$
 $y = 0 + 3$

(iii) y int (x=0) (iv) x int (y=0)

$$y = \log_3(x+9) + 3$$
 $y = \log_3(x+9) + 3$ $y = 2 + 3$ $y = 3 + 3$ $y =$

Reflections, Stretches, and Translations of a Logarithmic Function

- a) Use transformations to sketch the graph of the function $y = -\log_2{(2x + 6)}$.
- b) Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - iii) the y-intercept, if it exists

iv) the x-intercept, if it exists

a)
$$y = -\log_3(3x+6)$$
 $y = -\log_3(3x+6)$
 $y = -\log_3$

(iii)
$$y = -\log(3(x+3))$$
 $y = -\log_3(3(x+3))$
 $y = -\log_3(3(x+3))$

(iv) x-int (y=0)

$$y=-log_{\delta}(a(x+3))$$

 $0=-log_{\delta}(ax+6)$
 $0=log_{\delta}(ax+6)$ Divide by a $a=2x+6$
 $a=2x+6$
 $a=2x+6$
 $a=2x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$
 $a=3x+6$

Key Ideas

- To represent real-life situations, you may need to transform the basic logarithmic function $y = \log_b x$ by applying reflections, stretches, and translations. These transformations should be performed in the same manner as those applied to any other function.
- The effects of the parameters a, b, h, and k in $y = a \log_c (b(x h)) + k$ on the graph of the logarithmic function $y = \log_c x$ are shown below.

```
Vertically stretch by a factor of |a| about the x-axis. Reflect in the x-axis if a < 0. y = a \log_c (b(x - h)) + k

Horizontally stretch by a factor of \left|\frac{1}{b}\right| about the y-axis. Reflect in the y-axis if b < 0.
```

• Only parameter *h* changes the vertical asymptote and the domain. None of the parameters change the range.

Homework

Questions #1, 2, 4, 5, 8, 11 on page 389 - 391