Molecular Orbitals

When two atoms share electrons to form a molecule, their atomic orbitals combine to produce molecular orbitals.

When the orbital is filled with two electrons, it is called a **bonding orbital**.

Sigma bond

Bond that forms when two atomic orbitals overlap head-on. -strong bond

Pi bond

Bond that forms when two atomic orbitals overlap side-by-side. -orbitals overlap less than in sigma bonds, thus the bonds are weaker than sigma bonds.

Hybridization Involving Single Bonds

In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals.

Ex. CH4

The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals.

Hybridization Involving Double Bonds

Ex. C_2H_4

The one 2s orbital and two 2p orbitals of each carbon atom mix to form three sp^2 hybrid orbitals.

Two of the sp^2 orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds.

The third sp^2 orbital overlaps with an sp^2 orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form a carbon-carbon pi bond.

Cothy

H

Composition

H

Composition

Mix 3 orbitals

Shappy + Sp² + Sp² + Sp²

30

$$Ay$$
 Ay
 Ay

Hybridization Involving Triple Bonds

Ex. C_2H_2

$$H-C\equiv C-H$$

The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon.

One of the *sp* orbitals overlap with the *1s* hydrogen orbital to form carbon-hydrogen sigma bonds.

The second *sp* orbital overlaps with the *sp* orbital from the other carbon to form a carbon-carbon sigma bond.

The non-bonding *2p* orbitals overlap side-by-side to form two carbon-carbon pi bonds.

$$\frac{C_2H_2}{H \cdot C_1 = C_2 \cdot H}$$

1. What type of hybrid orbitals used by each carbon?

C₁: Stpx+py+p₂
$$\longrightarrow$$
 Sp³+sp³+sp³+sp³ (4 σ)

C₂: S+px+py \longrightarrow Sp²+sp²+sp² (3 σ , $| \neg \tau \rangle$)

C₃: S+px \longrightarrow Sp+ Sp (2 σ , 2 τ)

C₄: S+px+py \longrightarrow Sp²+sp²+sp² (3 σ , $| \neg \tau \rangle$)

2. How many total sigma and pi bonds in molecule?

Homework

Worksheet