Molecular Orbitals When two atoms share electrons to form a molecule, their atomic orbitals combine to produce molecular orbitals. When the orbital is filled with two electrons, it is called a **bonding orbital**. #### Sigma bond Bond that forms when two atomic orbitals overlap head-on. -strong bond #### Pi bond Bond that forms when two atomic orbitals overlap side-by-side. -orbitals overlap less than in sigma bonds, thus the bonds are weaker than sigma bonds. # **Hybridization Involving Single Bonds** In <u>hybridization</u> atomic orbitals mix to form the same total number of equivalent hybrid orbitals. #### Ex. CH4 The one 2s orbital and three 2p orbitals of a carbon atom mix to form four sp^3 hybrid orbitals. ## **Hybridization Involving Double Bonds** Ex. C_2H_4 The one 2s orbital and two 2p orbitals of each carbon atom mix to form three sp^2 hybrid orbitals. Two of the sp^2 orbitals overlap with the 1s hydrogen orbital to form carbon-hydrogen sigma bonds. The third sp^2 orbital overlaps with an sp^2 orbital from the other carbon to form a carbon-carbon sigma bond. The non-bonding *2p* orbitals overlap side-by-side to form a carbon-carbon pi bond. Cothy H Composition H Composition Mix 3 orbitals Shappy + Sp² + Sp² + Sp² 30 $$Ay$$ Ay ### **Hybridization Involving Triple Bonds** Ex. C_2H_2 $$H-C\equiv C-H$$ The one 2s orbital and one 2p orbitals of each carbon atom mix to form two sp hybrid orbitals for each carbon. One of the *sp* orbitals overlap with the *1s* hydrogen orbital to form carbon-hydrogen sigma bonds. The second *sp* orbital overlaps with the *sp* orbital from the other carbon to form a carbon-carbon sigma bond. The non-bonding *2p* orbitals overlap side-by-side to form two carbon-carbon pi bonds. $$\frac{C_2H_2}{H \cdot C_1 = C_2 \cdot H}$$ 1. What type of hybrid orbitals used by each carbon? C₁: Stpx+py+p₂ $$\longrightarrow$$ Sp³+sp³+sp³+sp³ (4 σ) C₂: S+px+py \longrightarrow Sp²+sp²+sp² (3 σ , $| \neg \tau \rangle$) C₃: S+px \longrightarrow Sp+ Sp (2 σ , 2 τ) C₄: S+px+py \longrightarrow Sp²+sp²+sp² (3 σ , $| \neg \tau \rangle$) 2. How many total sigma and pi bonds in molecule? # Homework Worksheet