Collision-Reaction Theory

Main principles of the collision-reaction theory:

- 1. all chemical reactions involve collisions between atoms, ions or molecules
- 2. a certain amount of kinetic energy is required for a reaction to occur
- 3. a certain orientation of particles is required

Rate of Reaction

Reaction Rate

A+B=C

Amount of reactant changing per unit time

Activation Energy

Minimum amount of energy that colliding particles must have in order to react

Activated Complex (Transition State)

Unstable arrangement of atoms that forms at the peak of the activation-energy barrier

http://www.youtube.com/watch?v=VbIaK6PLrRM

http://www.youtube.com/watch?v=rl50M-wNVcs

Factors Affecting Reaction Rates

Temperature

Raising the temperature speeds up the rate of reaction

• More collisions, and more particles with enough kinetic energy to overcome activation energy barrier Ex. burning of charcoal

Concentration

Increased concentration increases rate of reaction

• More particles, more collisions, higher rate of reaction Ex. glowing splint in pure oxygen

Particle Size

Larger the particle, slower the rate of reaction

• Larger particle, less surface area, less reactant available for collision Ex. Burning log in a fire

Catalyst

Lowers the activation energy for a reaction, increasing rate of reaction

• Not consumed in chemical reaction

Ex. Enzymes in digestive tract

<u>Inhibitor</u> - substance that interferes with the action of a catalyst, often by reacting with the catalyst

SAMPLE PROBLEM: % REACTION

Find the % reaction and write the expression if 6.90 g of $H_{2(g)}$ and 32.0 g of $O_{2(g)}$ react to form 25.75 g of ice at - 70 C°.

On is L.R.

SAMPLE PROBLEM: % REACTION

Find the % reaction and write the expression if 6.90 g of $H_{2(g)}$ and 32.0 g of $O_{2(g)}$ react to form 25.75 g of ice at - 70 C°.

02 15 L.R.

Worksheet