Warm Up CaBr_{2(aq)} +2Ag_(s) $$\longrightarrow$$ Ca_(s) +2Ag_(s) \longrightarrow Ca_(s) +2Ag_(s) \longrightarrow 2Al_(s) +3Pb_{(NO₃)_{2(aq)} \longrightarrow 3Pb_(s) +2Al_{(NO₃)₃(oo) metal Mat Cit F_{2(g)} + 2NaCl_(oo) \longrightarrow Cl_{2(aq)} +2NaF_(oo)}} ## **Chemical Reactions** ## V. Double Replacement Reaction Reaction that occurs between two ionic compounds in solution. Ions will "change partners". ⇒if one of the products has low solubility, it may form a precipitate (solid). This double replacement reaction is called **precipitation**. A second type of double replacement reaction is a **neutralization** reaction, which is a reaction between an acid and a base, to form water and an ionic compound. HCl_(aq) + KOH_(aq) $$\longrightarrow$$ HCl_(aq) + KCl_(aq) acid base water ionic compound DOUBLE REPLACEMENT Compound -> Compound + compound ## **Practice Problems** BaCl_{2(aq)} + Na₂SO_{4(aq)} $$\rightarrow$$ BaSO_{4(s)} + 2NaCl_(aq) SNaOH_(aq) + FeBr_{3(aq)} \rightarrow 3NaBr_(an) + FeOH_{3(s)} NaoH p. 335 #18,19 p. 339 #22 27 24 26