Warm Up

CaBr_{2(aq)} +2Ag_(s)
$$\longrightarrow$$
 Ca_(s) +2Ag_(s) \longrightarrow Ca_(s) +2Ag_(s) \longrightarrow 2Al_(s) +3Pb<sub>(NO₃)_{2(aq)} \longrightarrow 3Pb_(s) +2Al<sub>(NO₃)₃(oo) metal

Mat Cit

F_{2(g)} + 2NaCl_(oo) \longrightarrow Cl_{2(aq)} +2NaF_(oo)</sub></sub>

Chemical Reactions

V. Double Replacement Reaction

Reaction that occurs between two ionic compounds in solution. Ions will "change partners".

⇒if one of the products has low solubility, it may form a precipitate (solid). This double replacement reaction is called **precipitation**.

A second type of double replacement reaction is a **neutralization** reaction, which is a reaction between an acid and a base, to form water and an ionic compound.

HCl_(aq) + KOH_(aq)
$$\longrightarrow$$
 HCl_(aq) + KCl_(aq) acid base water ionic compound

DOUBLE REPLACEMENT

Compound -> Compound + compound

Practice Problems

BaCl_{2(aq)} + Na₂SO_{4(aq)}
$$\rightarrow$$
 BaSO_{4(s)} + 2NaCl_(aq)

SNaOH_(aq) + FeBr_{3(aq)} \rightarrow 3NaBr_(an) + FeOH_{3(s)}

NaoH

p. 335 #18,19 p. 339 #22 27 24 26