Warm Up

Ammonia gas decomposes into nitrogen and hydrogen gases in a 3.00 L reaction vessel, creating an equilibrium. Determine the equilibrium constant if there are 1.90 mol of NH₃, 2.80 mol of N₂, and 2.20 mol of H₂ present at equilibrium. Is the reaction products-favoured or reactants-favoured?

Eqm Law Worksheet #2,4

Change in Equilibrium Conditions

A complete description of an equilibrium state of a system must indicate temperature, pressure, composition and concentrations of all entities. (A percent reaction or equilibrium constant may be part of the the description.) $2NH_3 \rightleftharpoons N_2 + 3H_2$ *There are as many states of equilibrium of a chemical system as there are combinations of properties.*

Le Chatelier's Principle

If a stress is applied to a system in dynamic equilibrium, the system changes in a way that relieves the stress, to re-achieve equilibrium.

- is a method of predicting in which direction an equilibrium will shift if the factors describing an equilibrium state (temperature, pressure, concentration) are changed.
- is useful in order to choose conditions which maximize the production of the desired product.

catalysts speed up the time to reach equilibrium but do not affect the final position of an equilibrium

Summary p. 492: Variables Affecting Chemical Equilibria

Concentration

I.
$$3NO_{2(g)} + H_2O_{(l)} \longrightarrow 2HNO_{3(aq)} + NO_{(g)}$$

$$\Rightarrow \text{remove } NO_{(g)} \qquad \Rightarrow \text{shift right}$$

Temperature

II.
$$2\text{NaCl}_{(s)} + \text{H}_2\text{SO}_{4(l)} + \text{energy} \longleftrightarrow 2\text{HCl}_{(g)} + \text{Na}_2\text{SO}_{4(s)}$$

 \Rightarrow heat system

*think of energy as an entity in the equation

III.
$$2SO_{2(g)} + O_{2(g)} \longleftrightarrow 2SO_{3(g)} + energy$$

$$\Rightarrow cool system (low T)$$

Pressure / Volume ⇒look at gaseous entities

IV.
$$2SO_{2(g)} + O_{2(g)} \longleftrightarrow 2SO_{3(g)}$$

⇒decrease volume (increase pressure)

⇒ increase volume (decrease pressure)