Acid - Base Theories

Revised Arrhenius Theory of Acids and Bases

- acids are hydrogen-containing compounds that ionize in aqueous solutions to give H- HBr, CH3(00H)....
- bases ionize to give OH ions

Monoprotic Acid - one hydrogen will ionize Ex. HNO₃

Diprotic Acid - two hydrogens will ionize Ex. H₂SO₄

<u>Triprotic Acid</u> - three hydrogens will ionize Ex. H₃PO₂

Advantage: it explained neutralization as H⁺ and OH⁻ combining to give H₂O

Disadvantage: not all hydrogen containing substances have acid properties (i.e., CH₄) and not all bases have OH- (NH₃).

$$H^{+} = proton$$
 (1.01)
 Oe^{+}
 On

H₂O CH4 NH₃ NH4OH

BRONSTED - LOWRY THEORY OF ACIDS & BASES

Bronsted-Lowry Acids and Bases

A new theory was needed because:

- (i) not all acid/base reactions involve water.
- (ii) not all bases contain hydroxide ions (N₂CO₃, NH₃).

Bronsted - Lowry Acid - a proton (hydrogen-ion) donor
Bronsted - Lowry Base - a proton (hydrogen-ion) acceptor

- acids lose a proton to a water molecule (H⁺ is a proton!)

Ex.
$$HCl_{(l)} + H_2O_{(l)} \longleftrightarrow H_3O_{(m)}^{\dagger} + O_{(m)}^{\dagger}$$

hydronium ion

(water molecule gains a proton)

- bases gain a proton from a water molecule

(H₂O acts as an acid, NH₃ acts as a base)

However water does not have to be present in order to have a proton exchange.

Ex.
$$HCl_{(g)} + NH_{3(g)} \longleftrightarrow NH_{4^{+}(aq)} + Cl_{-(aq)}$$

HCl donates a proton (acid)

NH₃ accepts a proton (base)

<u>amphoteric (amphiprotic)</u> -substance that can act as a Bronsted-Lowry acid in some reactions and a Bronsted-Lowry base in other reactions.

$$HSO_{3\bar{}(aq)} \ + \ H_3O^+{}_{(aq)} \ \longleftrightarrow H_2SO_{3(aq)} \ + \ H_2O_{(l)}$$

$$HSO_3^{\text{-}}_{(aq)} + OH^{\text{-}}_{(aq)} \longrightarrow SO_3^{2\text{-}}_{(aq)} + H_2O_{(l)}$$