

Solving Quadratic Equations by Factoring

Ex'
$$f(x) = \frac{\partial}{\partial x}(x+5)(\partial x-1)$$
 functions
height
 $a = \partial \rightarrow \text{ opens up}$.
 $x - \text{int}$: $(y=0)$ $0 = \frac{\partial}{\partial x}(x+5)(\partial x-1)$
 $x+3=0$ $|\partial x+1|=0$
 $|\partial x=1|$
 $|\partial x=0.5|$
 $|\partial x=0.5|$
 $|\partial x=0.5|$

$$y = -1(x+1)(x-4)$$

$$f(x) = -1(x+1)(x-4)$$

$$0 \quad a = -1 \rightarrow \text{opens down}$$

$$0 y-int : C=(a)(r)(s)$$

$$C=(-1)(1)(-4)=4 (0,4)$$

(a) axis of symmetry. Use (-1,0) and (4,0)
$$X=1.5 \quad (x \text{ coordinate}) \quad \frac{-1+4}{3} = \frac{3}{3} = 1.5$$
of vertex

8 Vertex.
$$y = -1(1.5+1)(1.5-4)$$

 $y = -1(3.5)(-3.5) = 6.25$

Solving Quadratic Equations ($ax^2 + bx + c = 0$)

Simple Trinomial

Add Multiply

Example 1:
$$x^2 + \underline{6}x + \underline{8} = 0$$
 $(x+2)(x+4) = 0$
 $(x+3)(x+4) = 0$

Let's try a few more...

$$3x^2 + 5x + 2 = 0$$

$$6x^2 + 14x + 8 = 0$$

EXTRA STEP

Example 3:
$$7x^2 + 4x = 0$$

$$X(7x + 4) = 0$$

$$X = 0$$

$$X = -4$$

$$X = -4$$

$$X = -0.57$$

***Sometimes you may remove a common factor first and then end up with a simple trinomial, a hard trinomial, or a difference of squares.

Example 4:
$$\frac{4x^2 - 9}{10} = 0$$

$$2x + 3 \cdot 2x - 3 = 0$$

$$3x + 3 = 0 \quad 3x - 3 = 0$$

$$3x = -3 \quad 3x = 3$$

$$x = -3 \quad x = 3$$

$$x = -3 \quad x = 3$$

$$x = -3 \quad x = 3$$

Using reasoning to write an equation from its roots

Tori says she solved a quadratic equation by graphing. She says the roots were -5 and 7. How can you determine an equation that she might have solved?

Philip's Solution

x = -5 or x = 7

 $x + 5 = 0 \qquad x - 7 = 0$

One factor is x + 5.

The other factor is x - 7.

$$(x+5)(x-7) = 0$$

$$x^{2} + 5x - 7x - 35 = 0$$

$$x^{2} - 2x - 35 = 0$$

The x-intercepts of the quadratic function are the roots of the equation.

I decided to use the roots to help me write the factors of the equation.

I wrote the factors as a product. Since each root is equal to 0, their product is also equal to 0.

I simplified to write the equation in standard form.

In Summary

Key Idea

Some quadratic equations can be solved by factoring.

Need to Know

- To factor an equation, start by writing the equation in standard form.
- You can set each factor equal to zero and solve the resulting linear equations. Each solution is a solution to the original equation.
- If the two roots of a quadratic equation are equal, then the quadratic equation is said to have one solution.

Assignment: pages 323 - 324

Questions 1, 2(a-d), 6, 7, 10, 11

Solutions => 6.5 Solving Quadratic Equations by Factoring

1. A M

a)
$$\chi^2$$
-II χ +28=0 -4 χ -7=28

 $(\chi$ -4)(χ -7)=0 -4+-7=-11

 χ -4=0 or χ -7=0

 χ =4 χ =7

b) χ^2 -7 χ -30=0 3 χ -10=-30

 $(\chi$ +3)(χ -10)=0 3 +-10=-7

 χ +3=0 or χ -10=0

 χ =-3 χ =10

c)
$$3y^{2} + 11y + 5 = 0$$

 $(y + 1)(y + 10)$
 2
 $(2y+1)(y+5) = 0$
 $3y=-1$
 2
 $y=-1$
 2
 $3y=-1$
 2
 $3y=-1$
 $4y=-1$
 $4y=-1$

2.
$$\{a-d\}a$$
 $x^2-121=0$ (Difference of Squares)
 $(x-11)(x+11)=0$
 $x-11=0$ or $x+11=0$
 $x=11$ $x=-11$
b) $9r^2-100=0$ (Difference of Squares)
 $(3r-10)(3r+10)=0$
 $3r-10=0$ or $3r+10=0$
 $3r=\frac{10}{3}$ $3r=-\frac{10}{3}$
 $r=\frac{10}{3}$ $r=-\frac{10}{3}$

c)
$$\chi^2 - 15\chi = 0$$
 (Common Factor)
 $\chi(\chi - 15) = 0$
 $\chi = 0$ or $\chi - 15 = 0$
 $\chi = 15$

d)
$$3y^2 + 48y = 0$$
 (Common Factor)
 $3y(y+16) = 0$
 $3y = 0$ or $y+16=0$
 $y=0$
 $y=0$

6. Determine the roots of each equation.

a)
$$5u^2-10u-315=0$$

 $5(u^2-2u-63)=0$ $7 \times -9=-63$
 $5(u+7)(u-9)=0$ $7+-9=-2$
 $u+7=0 \text{ or } u-9=0$
 $u=-7$ $u=9$

b)
$$0.25x^2 + 1.5x + 2 = 0$$

 $0.25(x^2 + 6x + 8) = 0$ $4 \times 2 = 8$
 $0.25(x + 4)(x + 2) = 0$ $4 + 2 = 6$
 $0.25(x + 4)(x + 2) = 0$ $4 + 2 = 6$
 $0.25(x + 4)(x + 2) = 0$ $0.25(x + 4)(x + 2) = 0$
 $0.25(x + 4)(x + 2) = 0$ $0.25(x + 4)(x + 2) = 0$
 $0.25(x + 4)(x + 2) = 0$ $0.25(x + 4)(x + 2) = 0$
 $0.25(x + 4)(x + 2) = 0$ $0.25(x + 4)(x + 2) = 0$

c)
$$1.4y^{2} + 5.6y - 16.8 = 0$$
 $1.4(y^{2} + 4y - 12) = 0$
 $1.4(y^{2} + 4y - 12) = 0$
 $1.4(y^{2} + 6)(y - 2) = 0$

```
7. The graph of a quadratic function has x-intercepts -5 and -12. Write a quadratic equation that has these roots.

y = a(x-r)(x-s)
Assuming a=1:
y = (x--5)(x-12)
y = (x+5)(x+13)
y = x^2+13x+5x+60
y = x^2+17x+60
Quadratic Equation => x^2+17x+60=0
```

10. Identify and correct any errors in the following solution.

$$5a^{2}-100=0$$

$$5a^{2}=100$$

$$a^{2}=35 \leftarrow Fror$$

$$a=5 \leftarrow Fror$$

Correction:
$$5a^{2}-100=0$$

$$5a^{2}=100$$

$$a^{2}=30$$

$$a^{2}=30$$

$$a^{2}=30$$

$$a^{2}=30$$

$$a^{2}=30$$

$$a=\pm\sqrt{30}$$

11. Identify and correct the errors in this solution:

$$4r^{2}-9r=0$$
 $(2r-3)(2r+3)=0 \rightarrow Error$
 $3r-3=0 \text{ or } 3r+3=0$
 $3r=3 \text{ } 3r=-3$
 $r=1.5 \text{ or } r=-1.5$

Grection: $4r^{2}-9r=0$

(drection:
$$4r^2-9r=0$$

 $r(4r-9)=0$
 $r=0$ or $4r-9=0$
 $4r=9$
 $r=9$

7s5e2 finalt.mp4

7s5e3 finalt.mp4

7s5e4 finalt.mp4

7s5e5 finalt.mp4

FM11-7s5.gsp