Solutions to Chapter 5 Review #2

- 1. Suppose you graph the linear inequality 2x + y < 4. Which set of statements describes the graph of the linear inequality?
 - A) The boundary line is a solid line. The plane is shaded above the line.
 - B) The boundary line is a dashed line. The plane is shaded above the line.
 - C) The boundary line is a dashed line. The plane is shaded below the line.
 - D) The boundary is a solid line. The plane is shaded below the line.

2. Which is a solution to the system of linear inequalities?

3. Consider the system:

```
\{(x, y) \mid 3y + x \ge 3, x \in R, y \in R\}
\{(x, y) \mid x - y \le 4, x \in R, y \in R\}
```

The boundaries for the two inequalities intersect at the point (3.75, -0.25). Which statement about this point is most accurate?

- A) The point is not in the solution set, because its coordinates are not whole numbers.
- B) The point is in the solution set, because it lies on both boundaries.
- C) The point is not in the solution set, because one of the inequality signs is < or >.
- D) The point is in the solution set, because one of the inequality signs is \leq or \geq .
- 4. A sports equipment manufacturer produces snowboards and skis. It takes 4 h to cut and mold each board and 1 h to put on the finishes. It takes 4 h to cut and mold and 2 h to put on the finishes for a pair of skis. The total number of snowboards and pairs of skis produced per day is at most 15.

Let x represent the number of snowboards and y represent the number of pairs of skis made in one day or less. What are the restrictions on x and y?

- A) No restrictions
- Β) x ε N, y ε N
- C) χεΙ, yεΙ
- D) x ε W, y ε W

5. Consider this system of linear inequalities:

$$y + 3x \ge 9$$

$$y < 2x - 3$$

Will the point of intersection on a graph of this system be a solid dot or an open dot?
Why?

- 6. The graph of a system of linear inequalities is shown, where the objective Function is P = 1.5x + 4y.
 - a) Determine the vertices of the feasible region.

b) What is the minimum solution for the system? ____(4, -1)

e) If *P* represents the amount of profit, in thousands of dollars, what is the maximum profit that can be made? \$ __30 000___

For
$$(4,-1)$$
: $P = 1.5(4) + 4(-1)$
 $P = 6 - 4$
 $P = 2$

